

车床数控系统

用户手册

适用于 31XTA/32XTA/300T 99TA/99TB/99TY/99UZ

目 录

系统概述·····	1-1
主要规格	1-1
系统资源	1-1
系统主要功能简介	1-1
坐标系规定	
1.4.1 相对于静止的工作而运动的原则	1-2
1.4.2 标准坐标系的规定	
1.4.3 机床运动部件方向的规定	1-2
1.4.4 机床参考点	1-2
1.4.5 工件坐标系	
1.4.6 换刀时刀补的原理	1-2
数控系统的操作键盘	
1.5.1 主功能键	1-5
1.5.2 软定义键 F1~F5	1-6
1.5.3 编辑字符键	
1.6.2 主功能选择	1-10
1.6.3 子功能选择	
1.6.3 子功能选择 系统编程····································	
	2-1
系统编程	2-1
系统编程······ 程序段格式	2-1 2-1 2-2
系统编程	2-1 2-12-2
系统编程	2-12-12-22-2
系统编程 程序段格式 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00——快速定位 2.2.2 G01——直线插补 2.2.3 G02——顺圆插补	
系统编程 程序段格式 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00——快速定位 2.2.2 G01——直线插补	
系统编程 程序段格式 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00——快速定位 2.2.2 G01——直线插补 2.2.3 G02——顺圆插补	
系统编程 程序段格式 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00——快速定位 2.2.2 G01——直线插补 2.2.3 G02——顺圆插补 2.2.4 G03——逆圆插补	
系统编程 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00——快速定位 2.2.2 G01——直线插补 2.2.3 G02——顺圆插补 2.2.4 G03——逆圆插补 2.2.5 G04——延时 2.2.6 G09——进给准停 2.2.7 G20——子程序调用	
系统编程 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00—快速定位 2.2.2 G01—直线插补 2.2.3 G02—顺圆插补 2.2.4 G03—逆圆插补 2.2.5 G04—延时 2.2.6 G09—进给准停 2.2.7 G20—子程序调用 2.2.8 G22—子程序定义	
系统编程 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00——快速定位 2.2.2 G01——直线插补 2.2.3 G02——顺圆插补 2.2.4 G03——逆圆插补 2.2.5 G04——延时 2.2.6 G09——进给准停 2.2.7 G20——子程序调用 2.2.8 G22——子程序定义 2.2.9 G24——子程序结束返回	
系统编程 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00—快速定位 2.2.2 G01—直线插补 2.2.3 G02—顺圆插补 2.2.4 G03—逆圆插补 2.2.5 G04—延时 2.2.6 G09—进给准停 2.2.7 G20—子程序调用 2.2.8 G22—子程序定义 2.2.9 G24—子程序结束返回 2.2.10 G25—跳转加工	
系统编程 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00——快速定位 2.2.2 G01——直线插补 2.2.3 G02——顺圆插补 2.2.4 G03——逆圆插补 2.2.5 G04——延时 2.2.6 G09——进给准停 2.2.7 G20——子程序调用 2.2.8 G22——子程序定义 2.2.9 G24——子程序结束返回 2.2.10 G25——跳转加工 2.2.11 G26——转移加工(程序内部子程序调用)	
系统编程 2.1.1 宏变量 准备功能(G 功能) 2.2.2 G01——直线插补 2.2.3 G02——顺圆插补 2.2.4 G03——逆圆插补 2.2.5 G04——延时 2.2.6 G09——进给准停 2.2.7 G20——子程序调用 2.2.8 G22——子程序结束返回 2.2.10 G25——跳转加工 2.2.11 G26——转移加工(程序内部子程序调用) 2.2.12 G27——无限循环	
系统编程 2.1.1 宏变量 准备功能(G 功能) 2.2.1 G00——快速定位 2.2.2 G01——直线插补 2.2.3 G02——顺圆插补 2.2.4 G03——逆圆插补 2.2.5 G04——延时 2.2.6 G09——进给准停 2.2.7 G20——子程序调用 2.2.8 G22——子程序定义 2.2.9 G24——子程序结束返回 2.2.10 G25——跳转加工 2.2.11 G26——转移加工(程序内部子程序调用)	
	系统资源

	2.2.15 G30—	──放大缩小倍率取消	2-9
	2.2.16 G31—	——放大或缩小倍率	2-9
	2.2.17 G33/C	G34——公/英制单刀螺纹循环	2-9
	2.2.18 G35—	——跳跃功能	2-10
	2.2.19 G40-C	G42——刀尖半径补偿	2-10
	2.2.20 G54—	——撤消零点偏置,恢复工作坐标系	2-10
	2.2.21 G55—	——绝对零点偏置	2-10
	2.2.22 G56—	──增量零点偏置	2-11
	2.2.23 G57—	——当前点偏置	2-11
	2.2.24 G61—	——当前段与后续加工段连续清角	2-11
	2.2.25 G62—	——当前段快速清角指令	2-11
	2.2.26 G64—	——取消清角过渡	2-11
	2.2.27 G71—	——内(外)径切削复合循环	2-12
	2.2.28 G72—	——端面切削复合循环	2-14
	2.2.29 G73-	——封闭轮廓复合循环	2-15
	2.2.30 G74—	——返回参考点(机械原点)	2-16
	2.2.31 G75—	——以机床坐标返回加工开始位置	2-16
	2.2.32 G76—	——从当前位置返回加工起始点(进刀点)	2-17
	2.2.33 G79—	——公制端面螺纹循环	2-17
	2.2.34 G80	——英制端面螺纹循环	2-17
	2.2.35 G81—	——外圆(内圆)固定循环	2-17
	2.2.35 G82—	──端面固定循环	2-19
	2.2.36 G83	──深孔加工循环	2-21
	2.2.37 G84—	——公制刚性攻丝循环	2-21
	2.2.38 G85—	——英制刚性攻丝循环	2-22
	2.2.39 G86—	——公制螺纹循环	2-22
	2.2.40 G87—	——英制螺纹循环	2-27
	2.2.41 G90	——绝对值方式编程	2-27
	2.2.42 G91	—-增量方式编程	2-27
	2.2.43 G92	——设定工件坐标系	2-28
	2.2.44 G96	——恒线速切削	2-28
	2.2.45 G97—	——取消恒线速切削	2-28
	2.2.46 G98	——取消每转进给	2-28
	2.2.47 G99—	—-设定每转进给	2-28
2.3	辅助功能(N	M 功能)	2-28
	2.3.1 M00—	─ 程序暂停	2-29
	2.3.2 M01—	─-条件暂停	2-29
	2.3.3 M02—	─ 程序结束	2-29
	2.3.4 M03—	—主轴正转	2-29
	2.3.5 M04—	—主轴反转	2-30
	2.3.6 M05	—主轴停止	2-30
	2.3.7 M08—	—开冷却液	2-31
		——关冷却液	
	2.3.9 M010/N	M11——主轴夹紧松开控制	2-31

2.3.10 M12/M13——主轴高速档继电器开/关	2-31
2.3.11 M20——开指定的继电器	2-31
2.3.12 M21——关指定的继电器	2-32
2.3.13 M24——人为指定刀补号	2-32
2.3.14 M25——等待换到结束	2-32
2.3.15 M28/M29——主轴的速度/位置模式	2-32
2.3.16 M41~M44——指定主轴转速档	2-32
2.3.17 M71~M85——功能脉冲输出	2-32
2.4 F、S、T 功能	2-32
2.4.1 F——进给功能	2-32
2.4.2 S——主轴转速控制	2-33
2.4.3 T——刀具功能	2-33
第三章 系统操作	3-1
3.1 安全、保护与补偿	
3.1.1 急停	
3.1.2 硬限位	
3.1.3 软限位	
3.1.4 间隙补偿	
3.1.5 丝杆螺距补偿	
3.2 PRGRM(程序)主功能	3-2
3.2.1 程序名输入原则	3-3
3.2.2 程序编辑	3-3
3.2.3 复制、删除和程序属性	3-4
3.2.4 输入和输出功能	3-5
3.2.5 浏览	3-5
3.3 U 盘管理	3-6
3.3.1 U 盘管理说明	3-6
3.3.2 如何进入 U 盘管理界面及界面介绍	3-6
3.3.3 U 盘文件的选中	3-7
3.3.4 如何打开 U 盘文件夹	3-7
3.3.5 如何返回上级目录	
3.3.6 如何将 U 盘文件存入系统	
3.3.7 如何将用户程序存储器中的程序存入 U 盘	
3.3.8 如何浏览 U 盘文件	
3.3.9 如何删除 U 盘文件	
3.3.10 如何在 U 盘管理界面下浏览用户程序存储器中的程序	
3.3.11 U 盘管理界面下循环浏览用户程序列表	
3.4 OPERT(操作)主功能	
3.4.1 自动循环(含任意段号处启动加工)	
3.4.2 手动操作机床	
3.4.3 返回机械零点	
3.4.4 手轮(手摇脉冲发生器)	
3.4.5 系统加工状态设置	
3.4.6 MDI 操作方式	3-11

3.5	图形显示功能	3-11
	3.5.1 图形显示功能的画面进入程序	3-12
	3.5.2 图形模拟步骤	
第四章	系统功能	4-1
	参数体系	
	参数的基本概念	
	4.2.1 加减速时间常数	
	4.2.2 直线式升降速	
	4.2.3 电子齿轮比	
	4.2.4 参数密码	4-3
4.3	系统参数	4-3
4.4	位参数	4-4
	4.4.1 进入	4-4
4.5	螺距误差补偿	4-4
	4.5.1 螺距误差补偿须注意的问题	4-4
	4.5.2 螺距误差补偿设置举例	4-4
	4.5.3 螺距误差补偿 U 盘导入	4-5
4.6	刀具参数	4-5
4.7	初始化	4-6
	4.7.1 清内存	4-6
	4.7.2 格式化	4-6
	4.7.3 修改密码	4-6
	4.7.4 出厂值	4-7
	4.7.5 时间设置	4-8
4.8	3 坐标修调	4-8
4.9	9 诊断	4-8
	4.9.1 输入口	4-9
	4.9.2 输出口	4-9
	4.9.3 主轴转速和主轴编码器	4-10
	4.9.4 手脉编码器	4-10
	4.9.5 报警定义	4-10
	4.9.6 报警列表	4-11
第五章	系统重要功能详述	······5-1
5.1	如何提高加工效率	5-1
	5.1.1 除非工艺需要工件的2两段轨迹之间为尖角,否则尽量不要使用G61,G62指令。如加工的时间常	常数为 100MS
	时,每条加工程序将节省 0.6~0.8.	5-1
	5.1.2 并行执行 S、T 等指令	5-1
	5.1.1 手动接脉	5-1
5.2	加工中修改刀补值	5-2
5.3	主轴控制	5-2
	5.3.1 主轴模拟量输出控制	5-2
	5.3.2 主轴的 M 功能控制	
	5.3.3 主轴夹紧卡盘 (液压卡盘) 控制	5-3

	5.3.4 主轴启动状态检测功能	5-4
	5.3.5 主轴的位置/速度模式	5-4
5.4	外部功能控制	5-4
	5.4.1 三位开关	
	5.4.2 系统对进给轴的控制	5-4
	5.4.3 伺服单元与系统应答逻辑	5-5
	5.4.4 系统对进给轴的脉冲输出方式	5-5
	5.4.5 软限位	
	5.4.6 机械零点开关设置	5-6
	5.4.7 换刀过程	5-7
	5.4.8 机床报警处理	5-7
5.5	工件坐标系的产生和恢复	5-8
	5.5.1 工件坐标系的产生模式	5-9
	5.5.2 机床坐标及工件坐标的产生	5-9
	5.5.3 与坐标系有关的参数选项	5-9
	5.5.4 坐标变换 G54-G57	5-10
	5.5.5 加工开始位置设定	5-10
	5.5.6 刀补修调与刀具偏置	5-10
5.6	刀尖半径补偿	5-11
	5.6.1 概述	5-11
	5.6.2 刀尖的相位定义	5-11
	5.6.3 刀具参数表	5-11
	5.6.4 刀尖补偿的轨迹方向定义	5-12
	5.6.5 刀补建立于撤销过程	5-12
5.7	系统软件升级	5-13
	5.7.1 系统软件升级	3-13
	5.7.2 用户开机界面更新	5-15
第六章	数控系统连接	6-1
	系统组成	
	6.1.1 数控系统控制单元框图	
	6.1.2 一个典型的机床电器方案	
	6.1.3 机械尺寸	
	6.1.4 接口定义一览	
	6.1.5 输出信号对照表	6-4
	6.1.6 输入信号对照表	
6.2	强电供电	
	6.2.1 安装要求	
	6.2.2 强电供电	
	6.2.3 接地	
	6.2.4 强电安装中注意事项	
6.3	数控系统内部连接	
	6.3.1 输入、输出示意团	
	6.3.2 数控系统输入、输出接口电路原理图	
6.4	数按系统信号接口定 ¥	

	6.4.1 数控	区系统外部连接	6-11
	6.4.2 主轴	抽接口 8J1	6-12
	6.4.3 串行	「通信接口 7J1	6-13
	6.4.4 刀架	B接口 5J1	6-13
	6.4.5 电机	L接口 4J1、4J3	6-15
	6.4.6 输入	./输出接口 5J2	6-17
	6.4.7 主轴	h编码器接口 6J1	6-18
	6.4.8 外接	竞手轮接口 6J2	6-19
	6.4.9 外接	長启动急停暂停接口 5J3	6-20
6.5	典型电气应	过用方案	6-21
附 录—	山烘圾製	· · · · · · · · · · · · · · · · · · ·	F1-1
		•	
附录二	系统参数	<u> </u>	•••••F2-1
附录三	位参数…		F3-1
附录四	系统界面	ī一览······	·····F4-1
附录五	编程实例	·	·····F5-1
, , , , , , , , , , , , , , , , , , , ,		▼	

第一章 系统概述

1.1 主要规格

脉冲当量: X: 0.001mm Z: 0.001mm

联动/控制轴数: 2/2

编程范围: ±99999.999mm

快进速度: 60000mm/min (0.001mm 当量)

程序容量: 电子盘容量为 640K, 可存储 200 个用户程序, 10 个参数文件。

插 补: 直线,圆弧,公、英制、直/锥、多头/单头螺纹,攻丝。

1.2 系统资源

显 示: 31XTA, 32XTA, 300T, 99TA, 99TB, 99TY, 99UZ: 7 寸彩色液晶屏,

分辨率为 480×234

电子盘: 640K存储器. 最多可存 200 个加工程序及参数文件

输入信号: 31XTA, 32XTA, 99TA, 99TB, 99TY: 33 路开关量, 光电隔离, 其中机床零信号

为中断方式接入, 快速响应

300T, 99UZ: 20 路开关量, 光电隔离

手轮接口1路,×1,×10,×100倍率

编码器接口: 1路,四倍频处理

输出信号: 31XTA, 32XTA, 99TA, 99TB, 99TY: 17 路开关量, 其中 13 路继电器功率驱动

输出和 4 路继电器触点输出; X、Y、Z 三个方向电机驱动信号(CP、CW)

脉冲输出

300T,99UZ: 15 路继电器功率驱动输出和 2 路继电器触点输出, X, Z

三相混合式步进电机接口

1 路 10 位模拟量输出,输出范围: 0~10V

通信: RS232C 异步串行口, USB 接口(300T 无此功能)

时间: 加工计时

1.3 系统主要功能简介

程序管理功能: 全屏幕编辑(ISO代码)、更名、删除、串行输入/输出等,USB输入/输出

築。

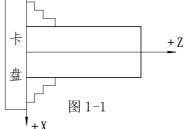
操作功能: 自动、手动、点动、手轮、MDI、回机床零点、单段、暂停、坐标及间补

记忆,任意段启动。

参数: 刀具参数、间隙补偿、系统参数、位参数、螺距误差补偿等

图 形: 实时跟踪加工图形及模拟加工

1.4坐标系规定


在数控机床上加工零件时,刀具与零件的相对运动,必须在确定的坐标系中才能按规 定的程序进行加工。为了便于编程时描述机床的运动,简化程序的编制方法,保证记录数据 的互换性,数控机床的坐标和运动方向均已标准化。

1.4.1 相对于静止的工件而运动的原则

这一原则是为了编程人员能够在不知道是刀具移动,还是工件移动的情况下零件图 纸,确定机床的加工过程。

1.4.2 标准坐标系的规定

标准坐标系是一个直角坐标系。如图 1-1 所示。 这个坐标系的各个坐标轴与机床主要导轨相平行。

1.4.3 机床运动部件方向的规定

机床的某一运动部件的运动正方向,是增大刀具和工件距离的方向。

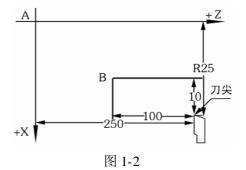
1.4.3.1 Z 坐标运动

2.坐标的运动,是由传递切削动力的主轴所规定。在标准坐标系中,始终与主轴平行的 坐标被规定为 Z 坐标。

1.4.3.2 X 坐标运动

X 坐标是水平的,它平行于工件的装夹表面。X 坐标是在刀具或工件定位平面内运动的 主要坐标。

在车床上,规定大拖板沿床身(纵向)向尾架侧移动为 2 坐标正向,刀架朝摇把方向移 动为X坐标正向(后置刀架正好相反)。


1.4.4 机床参考点

机床参考点也称机械零点,它是指 X、Z 两方向沿正向移动到接近极限位置,感应到该 方向参考点开关时所决定的位置。一台机床是否有回参考点功能,取决于机床制造商是否安 装了参考点开关(也称机械原点开关)。

1.4.5 工件坐标系

选择机床上的固定位置作为原点,相对于该原点的坐标值描述工件形状的坐标系,一般 工件的编程都是以工件坐标系实现的。以车床为例, X 方向的原点是工件的轴线, Z 方向的 原点一般选卡盘端面或工件端面均可。

所有坐标值,其含义是刀尖相对于坐标原点的位置。坐标原点不同,即使刀尖在机床上 处于同一绝对位置, 其坐标值也不同。为了保证加工中 刀尖坐标的唯一性,必须确定坐标原点(也称零点), 而零点位置是由刀尖的位置及坐标值大小反推而得到。 例如: 假设刀尖坐标为(50,250),则沿 X 负方向走 25mm 处为 X 坐标原点:沿 Z 负方向走 250mm处为 Z 坐标原 点(见图 1-2 的 A 处)。

注: 在车床上,规定 X 方向(也称横向)坐标为直 径量。

现在假设刀尖位置不变,而坐标为(20,100)则零

点在图中的 B 处,这就是浮动零点的概念。但请记住,对于一个加工程序,必须将零点确定 后才能加工,不得随意改变(除非通过坐标平移指令)。浮动零点一旦确定,便构成实际加 工中使用的工件坐标系。程序中所有刀尖移动,均以该坐标系为参考。坐标零点的确定,详 见对刀过程及 G92 指令。

1.4.6 换刀时刀补的原理

加工比较复杂的工件时,往往需要多把刀具。而加工

1-2

程序是按其中某一把刀具的刀尖进行编制的,换刀后,当前刀尖相对于前一把刀的刀尖在 X 和 Z 两个方向必定会有偏移,也就是说即使大小拖板不动,换刀后刀尖位置会变化,刀补的作用是来弥补这种变化。

例如:当前刀为T1,其刀尖位置为A1;换成二号刀后(n),二号刀刀尖处于A2位置,换刀后刀尖坐标由A1(X1,Z1)变为A2(X2,Z2),刀补的作用就是将刀尖坐标值由原来的坐标(X1,Z1)转换成(X2,Z2),A1和A2在X、Z方向的相对差值是可以预先测出的,这个值就是数控系统记忆的刀补值。在实际应用中,为了简化这一过程,数控系统不是测出各把刀两两之间的差值,而采取更简洁的方法来记忆刀补值。即记忆坐标值的方法来确定。

例如:将每把刀的刀尖沿 X、Z 方向一一靠上某一固定点(芯棒或试件),把刀尖刚刚接触这一固定点时作为标准,由于各把刀的长度不同,靠到固定点时显示的坐标点也不同。数控系统分别记忆各把刀靠到时的坐标值。这些各不相同的坐标值两两之间实际上就包含了这两把刀之间的长度差信息。在产生刀补值时有多种方法,数控系统采用的是试切工件后输入工件尺寸的方法,可以方便地对出外圆,内孔等刀具的刀补值,而且消除了工艺系统弹性变形造成的误差。

1.5 数控系统的操作键盘

数控系统提供的全部操作功能可由键盘操作实现。系统前面板由液晶屏、地址功能键盘 区、数字键盘区和手动操作键盘区组成。

系统的操作面板如图 1-4 所示:

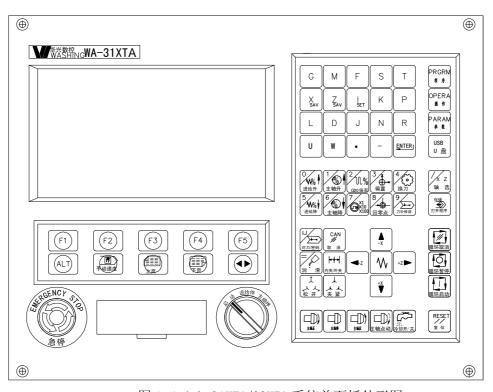


图 1-4 (a) 31XTA/32XTA 系统前面板外形图

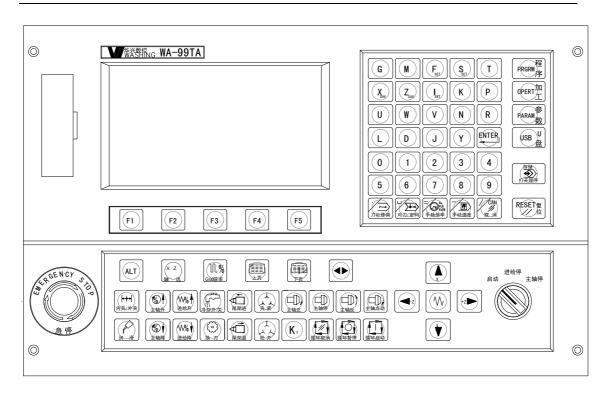


图 1-4 (b) 99TA/99TB 系统前面板外形图

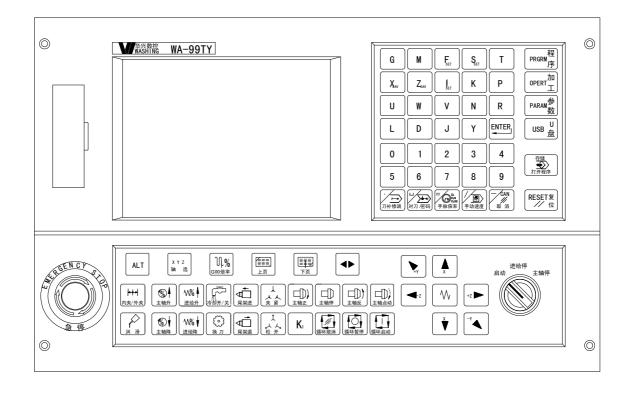


图 1-4 (c) 99TY 系统前面板外形图

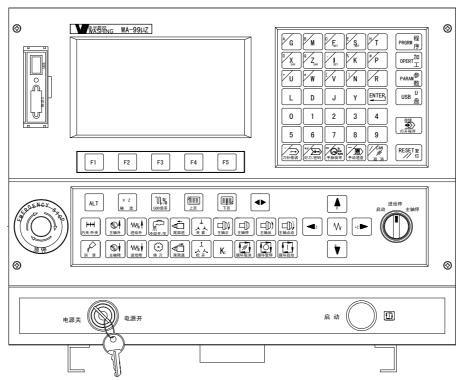


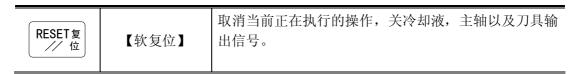
图 1-4 (d) 99UZ/300T 系统前面板外形图

数控系统具备四大主功能

PRGRM——程序:与程序有关的各种管理,程序输入、输出操作。

OPERT——加工: 所有与机床有关的运动,强电信号控制。

PARAM——参数:根据不同的机床设定不同的控制参数。


USB-----U盘: U盘管理功能,进行U盘文件操作。

1.5.1 主功能键

主功能键盘区包括程序、加工、参数、U 盘、复位五个键,用于选择系统的五大主功能。 其具体功能及意义如表 1-1 所示。

表 1-1 主功能键盘区按键说明

按键	手册中的符号	说明
PRGRM 程 序	【程序】	用户加工程序管理,用于创建、修改、保存以及输入输 出用户加工代码等操作。
OPERT 工	【加工操作】	机床操作加工,实现对机床的各种操作功能。
PARAM 参 数	【参数】	参数设置,用于设置各种与机床、数控系统以及驱动器 有关的参数。
USB 盘	【U盘】	USB 接口,用于管理 U 盘与系统之间的程序与参数的交换。

1.5.2 软定义键 F1~F5

在液晶屏下方有五个键标有 F1~F5,在手册中分别用【F1】~【F5】该键所代表的功能随当前用户选择的主功能不同而变化,主要用于在主功能下选择属于该主功能的子功能,F键的含义跟当前屏幕下方的汉字对应。当超出五个键时,按【◀►】键切换到下一页软功能画面。

1.5.3 编辑字符键

主要用于输入加工程序的 ISO 代码及各种坐标参数值。

表 1-2 编辑字符键盘

	农 1 2 拥 并 于 7		
按键	手册中的符号	说明	
G P	[G] ··· [P]	字母键。有GMFSTXZIKPLDJNUWR	
0 9	[0] ··· [9]	数字键。有0 1 2 3 4 5 6 7 8 9	
L CAN 取消	[]	空格键,在程序编辑时,此键被当作空格键使用	
— 対 <i>対</i>	[-]	负号键,在编辑、输入时被用作负号	
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	[.]	小数点键,在编辑、输入时被用作小数字	
一	[=]	等号键,在编辑、输入时被用作等号	

1.5.4 手工操作机床时坐标进给及进给参数设置

表 1-3

按键	手册中的符号	说明
— -z	[z-]	Z 负向手动进给
+2	[Z+]	Z 正向手动进给

	[x-]	X 负向手动进给
+X	[x+]	X 正向手动进给
F _{SET}	【Fset】	设置进给速度F
, SET	[Iset]	设置步进量 I
S _{SET}	【Sset】	设置主轴转速S
X _{SAV}	[Xsav]	记忆X向的坐标值
Z _{sav}	[Zsav]	记忆 Z 向的坐标值

1.5.5 其它

表 1-4 其它键

	手册中的符号	说明
↓ ↓ 人 松 开 夹 紧	【主轴松开】【主轴夹紧】	主轴夹紧/松开
+++ 内夹/外夹	【内夹/外夹】	选择向内或向外夹紧
東 动速度	【手进进给】	手进进给速度选择
X Z 轴 选	【手脉轴选】	手脉轴选
循环启动	【循环启动】	循环启动,用于执行一个加工程序
循环暂停	【循环暂停】	循环暂停
循环取消	【循环取消】	循环取消,终止本次循环
	【手动快速】	与【→z、+z】、

7 X10 X100 X100	【手轮倍率】	手轮脉冲倍率设定:将手轮的输出脉冲乘以设定的倍率数。×1、×10、×100
偏置	【坐标偏置】	调整机床坐标系,一般在电机丢步时使用
0 ₩% 1 进给升 5 ₩% ↓ 进给降	【进给升】	在自动、手动下动态调节进给速度F
1 6	【主轴升】 【主轴降】	在自动、手动下动态调节主轴转速 S(仅在主电机变频调速时有效)
对刀/密码	【对刀】	【对刀】键为快捷键,在手动、自动、手轮操作状态下按下此键快进入刀具补偿参数界面。 【密码】在参数界面下输入密码时使用
打开程字	【存储】	该键在操作加工界面下用作【打开】键:输入程序名后,调入当前要加工的程序; 在其他界面用作【存储】键:将程序、系统 参数、刀具参数、机床参数文件式存人电子 盘。
4~~ 换页	【换刀】	每按一次,系统按顺序换下一把刀。
主轴正	【主轴正】	顺时针旋转
主轴反	【主轴反】	逆时针旋转
主轴停	【主轴停】	停止主轴
主轴点动	【主轴点动】	
←	【尾架进】	
力补修调	【刀补修调】	【刀补修调】为快捷键,切换到刀具参数界面,并按下【F2】
第11 冷却开/关	【冷却开/关】	冷却液开 / 关,按一次切换一次

润滑	【润滑】	
8 回零点	【返回对刀点】	相当于 G76,在刀尖位于机床上的合适位置作为加工开始点,开时该点的坐标记入P18#,P19#参数,每次加工完后,刀架回到该点,可进行测量及重新装夹工件等,并作为下次加工的开始位置。
CAN 取 消	【CAN】	取消显示的错误代码,对于机床的外部报警如急停等,按此键不能取消显示。在输入时,可以取消输入。
上页	【上页】 【下页】	当某项参数(如:系统参数、位参数、螺距补偿参数等,长度超过一页时,按【上页】、 【下页】翻页。
ALT	[ALT]	上电时一直按住此键进入升级画面。在操作加工界面可切换显示模式。

注: 系统键盘有若干复用键,数控系统能自动判断按键的意义,用户无须进行键定义的 切换操作。

1.6 开机

第一次开机前,应检查系统外观是否有明显异常,电源连接是否有误,到开关电源接头是否有脱落,确认无误后方可通电。系统的动力来源为三芯电源插头,引入单相 220V / 50Hz 交流电,接地线接机床强电柜的接地铜排。

1.6.1 开机画面及设计

系统开机时显示出开机画面,如图 1-5 所示

图 1-5 开机界面

系统的开机画面可由用户自行设计,用户可自行设计—幅 480×234 点阵的 256 色彩色图像。a)通过 U 盘下载到系统中,具体过程如下:

- 1. 上电时,按下 ALT 键,直到进入升级界面。
- 2. 将设计的图片存到 U 盘根目录下, 并根据升级界面的提示修改文件名, 再插入 U 盘。
- 3. 按【F1】(U盘),再按【F4】(开机画面),系统开始升级。

- b)通过串口升级方式下载到系统中, 具体过程如下:
- 1. 上电时,按下 ALT 键,直到进入升级界面。
- 2. 按【F2】(串口),再按【F4】(开机画面),系统开始升级。

1.6.2 主功能选择

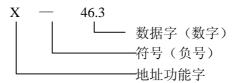
开机后,只有主功能选择有效,用户想使用某个具体的功能,只有进入相关的主功能后,才能实现。因此,用户必须首先按包含该具体功能(子功能)的主功能选择键,进入对应的主功能状态,选择所希望的功能。本系统操作介面尽量采用提示方式,使用户了解当前操作是否为系统所提供。同时按键操作原则是:以尽量少的按键次数,实现用户所希望的功能。

- 一般说来,要实现某一个具体功能操作,用户只须进行三次按键:
- 1. 按主功能键,系统退出原来状态,进入新的主功能状态。
- 2. 按子功能选择键(一般是【F1】~【F5】之一),将该子功能置于有效。
- 3. 在子功能状态下,按具体操作键实现具体功能。例如,当前系统处于编辑状态下,正 在编辑加工程序,用户希望进入操作状态,使 X、Z 二轴移动到合适位置,按以下顺序操作:
- (1)按**【操作**】主功能键,系统将刚才所编辑的加工程序自动保存好,然后退出【程序】 主功能,进入**【操作**】主功能,屏幕上显示**【操作**】主画面。
- (2) 按与"手动"相对应的F功能键(如没有,请按【◀▶】切换F功能键),进入手动方式。
 - (3) 按坐标移动键【Z-】、【Z+】、【X-】、【X+】移动坐标轴。
 - 这是一个一般性的操作,对于其他情况可能需要2—4次操作。

1.6.3 子功能选择

在屏幕下方有五个键标有 $F1\sim F5$,这五个键的作用是在某一主功能下,选择各种子功能。由于主功能有三种,而各种主功能下的子功能也各不相同,因此, $F1\sim F5$ 的作用也随时变化,对于当前 $F1\sim F5$ 的具体定义,在屏幕有提示。因此, $F1\sim F5$ 又称软定义键或 F 功能键。对于在当前主功能下未定义的 F键,屏幕上一般无相应提示,按此键系统无响应。本系统在软件版本升级时可能对其加以定义。当 $F1\sim F5$ 不够用时,可按【 \P 】键切换到下一页 F 功能键。

第二章 系统编程


2.1程序段格式

所谓程序段格式,是指程序段书写规则,它包括数控机床要执行的功能和执行该功能所需的参数,一个零件加工程序是由若干程序段组成,每个程序段又由不同的功能字组成,车床数控系统常用的功能字如下:

功能	地址	范围	意义
程序号	P, N	01~99	指定程序号,子程序号
顺序段号	N	0~99999	程序段号
准备功能	G	00~99	指令动作方式
坐标字	X, Z, I, K, R, L, J, D	$\pm 0.001 \sim \pm 99999.999$	运动指令坐标、圆心坐标、 螺距、半径、循环次数
进给速度	F	$1{\sim}15000$ mm/min	进给速度指令
主轴功能	S	0∼5000RPM	主轴转速指令
刀具功能	T	1~8	刀具指令
辅助功能	M	0~99	辅助指令

数控系统不要求每个程序段都具有上面这些指令,但在每个程序段中,指令要遵照一定 格式来排列。每个功能字在不同的程序段定义中可能有不同的定义,详见具体指令。

数控系统采用的程序格式是可变程序段格式,所谓可变程序段格式就是程序段的长度随字数和字长的变化而改变。一个程序段由一个或多个程序字组成。程序字通常由地址字和地址字后的数字和符号组成,例如:

这种程序字格式,以地址功能字为首,后跟一串数字组成,若干个字构成一个程序段。 在上一程序段已写明而本程序段里不发生变化的那些字仍然有效,可以不再重写。尺寸字中, 可只写有效数字,不规定每个字要写满固定数。

例如: N0420 G03 X70 Z-40 I0 K-20 F100 上段程序中 N、 G、 X、 Z、 I、 K、 F 均为地址功能字 R G03 准备功能,也可写成 G3 X Z I K 坐标地址 F 进给速度 "-" 表示符号

在程序段中,表示地址功能的英文字母可以分为尺寸字地址和非尺寸字地址,尺寸字地址用以下字母表示: $X \times Z \times I \times K \times R \times J \times D$; 非尺寸字地址用以下字母表示: $N \times S \times T \times G \times F \times M \times P \times L$,在 $X \times D$,所有尺寸均以直径或直径差表示。例如: $X \times D$ 表示刀尖移动到 $\Phi \times D$ 处,

I10表示圆心相对于圆弧起点的直径差为 Δ Φ 10。

一个完整的程序由程序名、程序段号和相应的符号组成,程序名在程序目录中以区分不同程序、程序内容见下例:

N0010	G92	X50	Z100		
N0020	S1200	OM C	3		
N0030	G01	X40	F300		
N0040	Z90				
N0050	G02	X30	Z85	10	K-5
N0060	G01	Z60			
N0070	G02	X40	Z55	I10	K0
N0080	G01	X51			
N0090	G0	X50	Z100		
N0010	M02				

在通常情况下,一个程序段是零件加工的一个工步,数控程序是一个程序段语句序列, 贮存在存储器里。加工零件时,这些语句从存储器里整体读出并一次性解释成可执行数据格 式,然后加以执行。

程序段号用来标识组成程序的每一个程序段,它由字母 N 后面跟数字 0000~9999 组成,程序段号必须写在每一段的开始,可使用段号自动生成器产生段号。(见程序编辑功能)在一个程序中,程序段号可以采用 0000~9999 中的任意值,但各程序段号原则上应按其在程序中的先后次序由小到大排列。为了便于在需要的地方插入新的程序段,建议在编程时不要给程序段以连续序号,如果在 CNC 面板上进行编程,建议程序段以 10 为间隔进行编号,这样便干插入程序时赋予不同段号。(见参数 P27*)

2.1.1 宏变量

程序段中可以使用宏变量(P0~P9)来替代数字。首先在程序中用赋值语句对宏变量(P0~P9)进行赋值,在以后的程序中,即可用已赋值的宏变量代换该数值,程序在执行时自动将宏变量换回该变量最近一次的赋值数。如果程序中对该宏变量再次赋值,则新值只对改变后的引用有效,之前的引用仍为原值。

```
例如: N0010
            P2=1
                     P5=55
                              P7 = 200
     N0020
                     XP5
                                        FP7
             G92
                              7100
     N0030
            F2=40
                     P5=160
     N0040
            XP2
                     ZP5
     N0050
             M02
这个程序执行时等同于:
     N0020
             G1
                 X55
                        Z100
                              F200
     N0040
              X40 Z160
     N0050
              M02
```

2.2 准备功能 (G功能)

准备功能用字母 G 后跟两位数来编程, G 功能也称准备功能指令,用来定义轨迹的几何 形状和 CNC 的工作状态。任何一种数控装置,其功能均包括基本功能和选择功能两大部分。基本功能是系统必备的功能,选择功能是供用户根据机床特点和用途选择的功能,编程时一定要先看懂机床说明书之后才能着手编程。机床可根据数控系统的功能来配置控制功能,即机床不一定能实现数控系统的全部功能。

W 12. 7 12.11 A 20	a -1 44 1	
数控系统的全部	G 功能如下:	

模态	G00	快速定位
模态	G01	直线插补
模态	G02	顺圆插补
模态	G03	逆圆插补
	G04	延时

- G09 伺服准确定位暂停
- G10 撤销各种镜像加工循环
- G11 平面图形沿 X 轴镜象加工循环(适用铣加工)
- G12 平面图形沿 Y 轴镜象加工循环(适用铣加工)
- G13 平面图形沿原点镜象加工循环(适用铣加工)
- G17 选择刀具补偿平面为 XOY (适用铣加工)
- G18 选择刀具补偿平面为 ZOX (车床控制自动选择 ZOX 平面刀补)
- G19 选择刀具补偿平面为 YOZ (适用铣加工)
- G20 子程序调用
- G22 子程序定义
- G24 子程序结束返回调用程序
- G25 跳转加工
- G26 转移加工(程序内部子程序调用)
- G27 无限循环
- G28 公制变螺距单刀螺纹
- G29 英制变螺距单刀螺纹

模态 G30 放大缩小倍率取消

- 模态 G31 放大或缩小倍率
 - G33 公制单刀螺纹加工循环
 - G34 英制单刀螺纹加工循环
 - G35 跳跃功能
 - G40 取消刀具(刀尖)半径补偿
 - G41 刀具(刀尖)半径左边补偿
 - G42 刀具(刀尖)半径右边补偿
 - G43 刀具长度补偿(适用铣加工)
 - G44 撤销刀具长度补偿(适用铣加工)
 - G50 加工程序临时修改系统参数
 - G54 撤消零点偏置,恢复上电时返回机械原点时的工件坐标
 - G55 绝对值零点坐标偏置
 - G56 增量值零点坐标偏置
 - G57 当前坐标点坐标偏置
 - G61 后继程序段快速清角
 - G62 当前段快速清角
 - G64 取消 G62 清角功能
 - G71 内(外)径切削复合循环
 - G72 端面切削复合循环
 - G73 封闭轮廓复合循环
 - G74 返回机床参考点(机械原点)
 - G75 以机床坐标返回加工开始点

	G76	以工件坐标返回加工开始点
	G78	精镗加工循环(适用铣加工)
	G79	端面螺纹公制
	G80	端面螺纹英制
	G81	外圆(内圆)固定循环
	G82	端面固定循环
	G83	深孔加工循环
	G84	公制攻丝循环
	G85	英制攻丝循环
	G86	公制螺纹加工循环
	G87	英制螺纹加工循环
	G88	精镗加工循环 I (适用铣加工)
	G89	精镗加工循环Ⅱ(适用铣加工)
模态	G90	绝对值方式编程
模态	G91	增量方式编程
	G92	修改工件坐标系坐标原点位置(改变刀尖的工件坐标值)
	G96	恒线速切削
	G97	取消恒线速切削
	G98	取消每转进给
	G99	设定每转进给

注意: 以上 G 功能一部分适用于车床,一部分适用于铣床,一部分都适用,以其 G 功 能的详细描述为准,本册中,凡针对铣加工的功能均不作叙述。

下面,对以上 G 功能作详细说明。

2.2.1 G00——快速定位

格式: GOO X_Z_

说明:(1)所有编程轴同时以 P30#~P33#参数所定义的速度移动,当某轴走完编程值便停止, 而其他轴继续运动。

- (2) 不运动的坐标无须编程。
- (3)目标点的坐标值可以用绝对值,也可以用增量值,小数点前最多允许 5 位数(不 包括符号),小数点后最多允许3位,正数省略"+"号(该规则适用于所有坐标 编程)。

(4) G00 编程时, 也可以写作 G0

例: 图 2-1 程序如下(从 A 运动到 B):

绝对值方式编程: G00 X75 Z200

增量方式编程: G91 G00 X-25 Z-100

或 GOO U-25 W-100

先是 X 和 Z 同时走到 A 点,接着 Z 向再走 75 到 B 点。 说明: 对于第三轴控制,可以将 Y 轴直接编程,

如: G00 X50 Y120 Z32

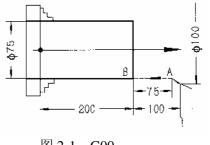
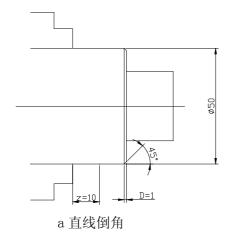


图 2-1 G00

程序间过渡说明:

两段加工轨迹之间的过渡有两种方式:圆弧转接与清角(尖角)过渡,详见 4.2.1 及 G61, G62, G64 说明

2.2.2 G01—直线插补


格式 1): G01 X Z F

对于机械加工中常见的倒角, G01 可附加倒角功能

格式 2): G01 X 50 D 1 [R 1] F 100

Z 10

其中D为斜线45度倒角,D为单边距离.如图2-2

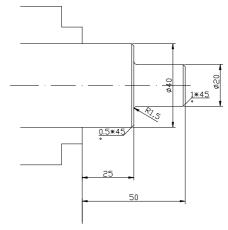
b 圆弧倒角

图 2-2

R 为圆弧形倒角, D 或 R 最大 10MM, 并且 X 与 Z 只支持沿端面或外圆加工(即单边加工), 不支持斜线. 否则会出现 05 # 错.

倒角程序可连续出现:

N0010 G00 X0 Z50


N0020 G01 X20 D1 F100

N0030 Z25 R1

N0040 X40 D1

N0050 Z5

N0060 G0 X50 Z100 (退刀)

2.2.3 G02——顺圆插补

格式: G02 X_ Z_ I_ K_ F_ G02 X_ Z_ R_ F_

说明: (1) X、Z 在 G90 时,圆弧终点坐标是相对编程零点的绝对坐标值。在 G91 时,圆弧终点是相对圆弧起点的增量值。无论 G90、G91,I 和 K 均是圆心相对圆弧起点的坐标值,I 是 X 方向的直径量。圆心坐标 I,K 在圆弧插补时不得省略,除非用 R(圆弧半径)编程。

(2)G02 指令编程时,可以直接编过象限圆,整圆等(R编程不能用于整圆)。

注意: 圆弧加工到顶点时 X 或 Z 轴可能会换向运动,此时系统会自动进行间隙补偿,如果参数区未输入间隙补偿或参数区的间隙补偿与机床实际反向间隙相差悬殊,都会在工件上产生明显的切痕。

- (3)整圆不能用 R 编程。
- (4) R 为工件单边 R 弧的半径。R 为带符号数, "+"表示圆弧角小于 180°; "一"表示圆弧角大于 180°。
 - (5) G02 也可以写成 G2。

例: 加工右图 AB 段圆弧程序如下: 绝对值方式:

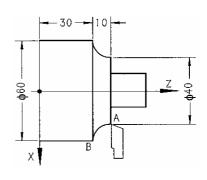


图 2-3 G03

G90 G02 X60 Z30 I20 K0 F150 (圆心坐标编程)

G90 G02 X60 Z30 R10 F150 (半径R编程)

增量方式:

G91 G02 X20 Z-10 I20 K0 F150(同心坐标编程)

G91 G02 X20 Z-10 R10 F150 (半径 R 编程)

G02 U20 W-10 R10 F150

2.2.4 G03----- 逆圆插补

格式: GO3 X_Z_I_K_F__

G03 X Z R F

说明:用 G03 指令编程时,除圆弧旋转方向相反外,其余跟 G02 指令相同。

例: 右图程序如下:

绝对值方式:

G90 G03 X60 Z30 R10 F100 (半径R编程)

增量方式:

G91 G03 X20 Z-10 I0 K-10 F100 (圆心坐标编程)

G91 G03 X20 Z-10 R10 F100 (半径 R编程)

G03 U20 Z-10 R10 F100

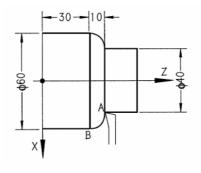


图 2-4 G04

2.2.5 G04——延时

格式: GO4 KXX.XX

说明:程序延时 K 后面的编程值(秒)后,继续向下运行,延时范围 0.01~65.53 秒。

2.2.6 G09 ——进给准停

格式: G09

说明: G09 用于检测伺服电机是否已经运动到指定位置,当伺服跟随误差小于给定值时,伺服会向 CNC 系统输出一个准停信号(XPSN、YPSN、ZPSN),当系统在走完某段程序后,如该段有 G09,则 CNC 在一段时间内检查各轴是否有 PSN 信号输入,该时间由 P89#参数设定,当超过定时,仍无信号,则 CNC 发出 54#报警继续向下运行。

2.2.7 G20 ——子程序调用

格式: G20 NXX.XXX

- 说明 (1)N 后第一个 2 位数为要调用的子程序的程序名,允许 2 位数,小数点后 3 位数表示本次调用的循环次数,可以从 1~255 次。
 - (2) 子程序中的宏变量(P0~P9)在G20调用前,必须赋予明确的数值。
 - (3) 本段程序不得出现以上描述以外的内容。
 - (4)不同的子程序可重复嵌套调用 10 次,但不得调用本身。

2.2.8 G22——子程序定义

格式: G22 NXX

说明 (1) 子程序名以 N 开头, N 后的二位数为子程序名。

- (2) G22 NXX 不得与其他指令共段。
- (3) G22 与 G24 成对出现,形成一个完整的子程序体。

- (4) 子程序内部的参数数据有二种格式:
 - a) 常数格式,数据中为编程给定常数,即0~9。
 - b) 宏变量格式,程序中的功能号,参数等数字部分均可用变量表示,而变量 的具体值在调用子程序的主程序中由 P=××定义传入,本系统可处理 10 个变量参数: P0 P1 ····· P9。
- (5) 子程序与转移加工(G25、G26) 可混合嵌套最多10次。
- (6) 在需要由参数定义变量时,可用 P0=×× ,P1=××等来给 P0#~P9#赋予明确 的数值,无论 P 参数在主程序或子程序中出现,该宏变量即用最近一次 的赋值来取代。

2.2.9 G24——子程序结束返回

格式: G24

- 说明: (1)G24表示子程序结束,返回到调用该子程序程序的下一段。
 - (2) G24 与 G22 成对出现。
 - (3) G24 本段不允许有其它指令出现。
- 例: 通过下例说明在子程序调用过程中参数的传递过程,请注意应用。

主程序 P01

```
N0010
       S1000
                 M03
N0020
       P7 = 200
                   P8 = 50
                             P9=02
N0030
       G20
               N50
        M02
N0040
子程序 N05
N0010
         G22
                N05
N0020
         G92
                X50
                       Z100
N0030
                       FP7
         G01
                X40
N0040
         Z97
N0050
         GP9
                Z92
                       X50
                              I10
                                     K0
                                           FP8
                Z - 25
N0060
         G01
                       FP7
N0070
         G00
                X60
N0090
         Z100
N0100
         G24
```

- 注意: (1)调用子程序时如果 P 参数没有定义,则在子程序中 P 参数的值是不定的。
 - (2) 变量也可用于主程序中。

2.2.10 G25——跳转加工

格式: G25 NXXXX. XXXX. XXX

说明: (1)本格式所定义的循环体为 N 后面的两个程序段号之间定义的程序块(包括这两段),最后一个数字定义该程序块的调用次数,1~255次,不编认为是 1。

- (2) G25 指令执行完毕后的下一段加工程序,为跳转加工程序块的下一段程序。 (3) G25 程序段中不得出现其它指令。
- 例: N0010 G92 X50 Z100

N0020 G25 N0040.0060.02

N0030 G00 X10 Z20

N0040 G01 X40 Z80 F300

N0050 Z60

N0060 G00 X50 Z100

N0070 G04 K3

N0080 M02

以上程序的加工顺序是这样的:

N0010-N0020-N0040-N0050-N0060-N0040-N0050-N0060-N0070-N0080

2.2.11 G26—转移加工(程序内部子程序调用)

格式: G26 NXXXX. XXXX. XXX

说明:转移加工指令执行完毕,下一个加工段为 G26 NXXXX. XXXX. XXX 段的下一段,这是与 G25 的区别之处,其余与 G25 相同。

例: N0005 S800 M03

N0010 G26 N0050.0080.02

N0020 G4 K2

N0030 G01 X2 F20

N0040 G00 X0 Z0

N0050 G92 G90 X0 Z0

N0060 G01 Z-20 X20 F300

N0070 M00

N0080 Z-40

N0090 Z-60 X0

N0100 M02

以上程序的加工顺序是这样的:

N0005-N0010-N0050-N0060-N0070-N0080-N0050-N0060-N0070-N0080-N0020-N0030-N0040-N0050-N0060-N0070-N0080-N0090-N0100

2.2.12 G27——无限循环

格式: G27 NXXXX. XXXX

说明: (1) N之后第一个段号与第二个段号之间的程序段为无限循环的区间,一旦进入到 G27 状态,系统将无限地重复执行这一块程序段所定义的运行轨迹。

(2)为保证每次循环开始时,坐标不发生偏移,要求该程序块为封闭轨迹,否则将造成每次开始时起点漂移,最终越出工作台。

2.2.13 G28——公制多段连继螺纹加工指令(段内、段间可变螺距)

格式: G28 Z U K R D

说明: Z_ 螺纹长度

U 锥度变化量

K_ 螺纹牙距

R 每转螺距变化量,螺距变化单位为毫米/转

D 螺纹起始角度(0~360 度)

- 注: (1)如果多个螺纹段连续编程,则起始角度"D"只在第一个螺纹段中有效。
 - (2)在螺纹加工期间主轴修调开关必须保持不变。
 - (3)进给修调开关无效。

举例: GO X20 Z0

G1 X19 F6000

G28 Z-20 K1

G28 Z-40 U5 K1 G28 Z-60 U5 K1

G1 X40 F6000

G0 X50 Z50

G28 应用典型举例

例1	"8"字油槽的加工	例2直螺纹转锥螺纹的加工	例 3 段内变螺距螺纹加工
N0010	M03 S50	N0010 M03 S1000	N0010 M03 S1000
N0020	G0 X50 Z20	N0020 G0 X50 Z20	N0020 G0 X50 Z20
N0030	G0 X20.5 Z-10	N0030 G0 X20 Z10	N0030 G0 X20 Z10
N0040	G28 X19.5 Z-6 K8	N0040 G1 X19.5 F6000	N0040 G1 X19.5 F6000
N0050	G28 Z-10 K8	N0050 G28 Z-10 K1	N0050 G28 Z0 K1
N0060	G28 Z-14 K8	N0060 G28 Z-30 U5 K1	N0060 G28 Z-20 K1 R0.1
N0070	G28 Z-10 K8	N0070 G1 X30	N0070 G1 X25
N0080	G28 X19 Z-6 K8	N0080 G0 Z10	N0080 G0 Z10
N0090	G28 Z-10 K8	N0090 G1 X19	N0090 G1 X19
N0100	G28 Z-14 K8	N0100 G28 Z-10 K1	N0100 G28 Z-20 K1 R0.1
N0110	G28 Z-10 K8	N0110 G28 Z-30 U5 K1	N0110 G1 X25
N0120	G28 Z-6 K8	M0120 G1 X30	N0120 G0 Z10
N0130	G28 Z-10 X20 K8	N0130 G0 Z10	N0130 G1 X18.9
N0140	G0 X50 Z20	N0140 G0 X50 Z20	N0140 G28 Z0 K1
N0150	MO2	N0150 M02	N0150 G28 Z-20 K1 R0.1
			N0160 G1 X25
			N0170 G0 X50 Z20
			N0180 M02

2.2.14 G29——英制多段连继螺纹加工指令(段内、段间可变螺距)

格式:同G28

说明: K 为牙/英寸

2.2.15 G30——放大缩小倍率取消

格式: G30

说明: 执行 G31 放大缩小时, G30 取消 G31 的作用。

2.2.16 G31——放大或缩小倍率

格式: G31 KXX.XX

说明: (1) 倍率范围为 0.001~65.5, 即 KO.001~K65.5。

- (2) 倍率的效果是将加工轨迹的各个部分尺寸均匀地放大或缩小 K 倍。
- (3) 倍率对刀具尺寸不产生效果。

2.2.17 G33/G34——公/英制单刀螺纹循环

格式: G33 Z_ K_ R_ 或 G33U_ Z_ K_ R_

U__ Z_: 螺纹终点坐标, K 螺纹, R: 切深

本循环只运行一次切削,循环结束后刀具在 X 方向停在定位 X 值的位置,Z 则回到循环起点,可以很方便地实现自由切削加工。

例: GO X50 Z100

G33 Z55 K1 R-1.5

G33 Z55 K1 R-2

G33 Z55 K1 R-2.2

.....

M02

详细使用方法请见G86/G87螺纹加工。

2.2.18 G35——跳跃功能

格式: G35 Z_F_

说明:在G35指令后,像G01一样可以指令直线插补。

- (1) 该指令执行时, 若输入了外部跳转信号, 则中断该指令执行, 转而执行下个程序段
- (2) 在编程中出现 G35Z xx 时,系统检测 P69 # 参数设定的输入口信号,当信号有效时,系统将 Z 座标置成 Z xx 后继续往下执行;如果在 Z 轴走完编程值后未检测到信号,系统不做处理继续往下执行。

N0010 G0 X50 Z50

N0010 G35 Z0 F1000 (系统在这过程中检测 P69 # 参数设定的输入口信号,当信号有效时系统将 Z 座标置成 0 后继续往下执行)

N0010 G01X52 Z-1 F150

N0010 G1Z-20

N0010 G0 X50 Z50

N0010 M02

N0010

2.2.19 G40—G42 刀尖半径补偿

G40——取消刀尖半径补偿

G41——左边刀尖半径补偿

G42——右边刀尖半径补偿

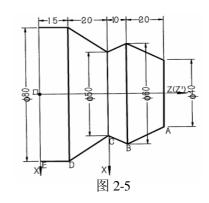
说明: G40-G42 见第五章说明

2.2.20 G54——撤消零点偏置,恢复工作坐标系

格式: G54

说明: (1) 在零点偏置后, G54 功能将使加工零件的编程零点恢复到上电时最初设定的工件坐标系。

(2) G54 功能将取消以前所有的坐标偏置功能。

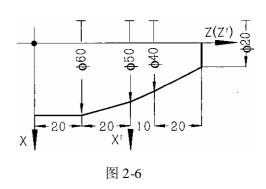

2.2.21 G55——绝对零点偏置

格式: G55 X__ Z__

说明: (1) G55 功能将使编程原点平移到 X' 0' Z' 所规定的坐标处。

- (2) X、Z 两个坐标可以全部平移,也可以一坐标平移,不编入的坐标,其原点不平移。
- (3) G55 功能为独立程序段,本段不得出现其它指令。
- (4) G55 以后的程序段,将以 G55 建立的新的坐标系编制,不考虑原坐标系的影响。
- (5) 加工时动态坐标显示仍然相对最初的坐标系原点。
- (6) G55 本身不是移动指令,它只是记忆坐标偏置,如需要刀具运行到 G54 这点,必须再编 G01 或 G00 X0 Z0 程序段,使刀具运行到 G54 点。

例: N0010 G92 G90 X40 Z65 N0020 G01 X60 Z45 F100 (AB) N0030 G55 Z35 N0040 G01 X50 Z0 (BC) N0050 X80 Z - 20(CD) N0060 G54 N0070 M02


2.2.22 G56——增量零点偏置

格式: G56 X_ Z_

说明: (1) G56 功能将使坐标系的原点从刀具的当前 位置增量平移 XZ 形成新的坐标系。

(2) 其它注意事项同 G55。

例: N0010 G90 G92 X20 Z70 G01 N0020 X40 7.50 F100 Z-10N0030 G56 N0040 G01 X50 Z0 N0050 X60 Z - 20N0060 G54 N0070 M02

2.2.23 G57——当前点偏置

格式: G57

说明: (1) G57 功能将刀具的当前位置设定为坐标原点,以后编程均以这点为坐标原点,不必考虑原坐标系的影响。

(2) 其余与 G56 相同。

例: N0010 G90 G92 X20 Z60 N0020 G01 X40 Z40 F100

N0030 G57

N0040 G02 Z-20 I0 K-10

N0050 G54 N0060 M02

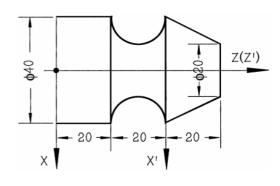
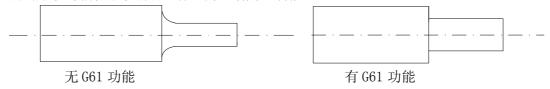


图 2-7

2.2.24 G61——当前段与后续加工段连续清角

格式: G61

说明:本段与后续加工轨迹均为尖角连接,直到 G64 取消之。(见 4.2.1 说明)例:G01 X100 Z20 F100 G61


2.2.25 G62——当前段快速清角指令

格式: G62

说明:本段轨迹与下段之间为尖角过渡

2.2.26 G64——取消清角过渡

格式: G64 G61~G64 说明: 在 4.2.1 中提到两段加工程序段间系统控制的切削速度不变,但二段轨道之间会出现过渡弧度,在一些对工件型面有要求的场合,必须消除这些弧度,如有阶轴,各种端面等。此时,采用了 G61 或 G62 可以使刀具在完全运行完本段程序后才开始下一段程序,保证二型面之间的形状与编程形状吻合,称之为"清角"功能。

在切削加工时,由于进给速度很小。约F300以下,在切削时间常数(39[#])较小(<100 毫秒)时,该过渡弧度也很小,对工件的影响也很小,在满足加工要求的前提下,不采用清角功能可以提高加工效率,减小冲击振动,有助于提高光洁度,但在要求较高的场合或必须为尖角,推荐采用G61(G62)功能。

G62 只对当前程序起作用,即本段程序实现清角,而其后的程序仍然采用过渡弧度方式。G61 对当前段及后续程序均有效,直到G64取消,过渡加工只适用于连续的G01,G02,G03,一旦后续程序不是以上轨迹,系统自动取消过渡功能。

2.2.27 G71——内(外)径切削复合循环

格式: G71 I_ K_ N_ X_ Z_ F_

说明: 该指令执行图 2-8 所示的粗加工和精加工,其精加工路径为 $A oldsymbol{ olds$

其中: I: 切削深度(每次切削量),指定时不加符号,方向由矢量 AB 决定;

K: 每次退刀量,指定时不加符号,X 和 Z 轴间方向分别由 X (X 方向精加工余量) 和 Z (Z 方向粗加工余量) 的符号决定:

- N: 精加工程序段数;
- X: X 方向精加工余量:
- Z: Z 方向精加工余量;
- F: 粗加工时 G71 中编程的 F 有效, 而精加工时处于精加工程序段内的 F 有效。

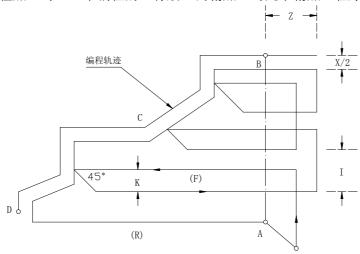


图 2-8 内(外)经切削复合循环 G71

G71 切削循环下,切削进给方向平行于 Z 轴,精加工余量 X 和 Z 的符号如图 2-9 所示。 其中(+)表示沿轴正方向偏移,(-)表示沿轴负方向偏移。X 值取+用于外径切削,取-用于 内孔切削。Z 取正值用于左切削,取-用于向右切削。

注意: (1)N(精加工程序段数)必须比1大:

- (2)A→B 必须是 G00 指令完成, B→C→D 内不能包含 G00 指令;
- (3)A→B 程序段中不应有 Z 向移动量,X 向移动量 B→C→D 的 X 向移动总量相等。

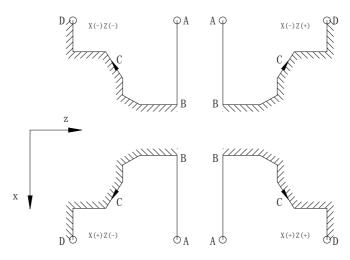
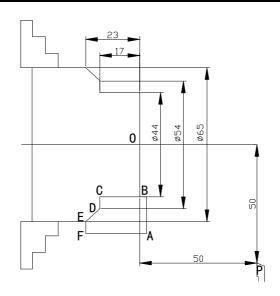



图 2-9 G71 复合循环下 X 和 Z 的符号

```
例: N0010 G00 X520 Z370 F2400
              I14 K2 N8 X0.74 Z0.29 F2400
   N0020 G71
                   Z370
   N0030
         G00
              X100
   N0040
         G01
              X100
                   Z350
                         F240
   N0050
         G01
              X200
                   Z230
   N0060 G01
              X200
                   Z170
   N0070
         G01
              X320
                   Z170
   N0080 G01
              X320
                   Z100
   N0090
         G03
              X420
                   Z50 I0 K-50
                   Z0 I100 K0
   N0100
         G02
              X520
   N0110 G00
              X520 Z370
   N0130 M02
   %P59 ······切内径
   N0010 G00 X10 Z370
   N0020 G71
              17 K2 N8 X-0.37 Z0.29 F2400
   N0030 G00
              X240 Z370
   N0040
         G02 X190 Z320
                         IO K-50 F240
   N0050 G03
              X140
                   Z270
                        I-50 KO
              X100 Z200
   N0060 G01
   N0070 G01
              X100 Z150
   N0080 G01
              X60 Z150
   N0090 G01
              X60 Z80
              X10 Z00
   N0100
         G01
              X10 Z370
   N0110 G00
   N0130 M02
```

G71 例程及详解

如要把Φ65 的棒料加工出如下的工件(O 点为编程坐标原点,P 点为起刀点),编程如下:

N10M03S800T01

N20G0X70Z3 ;A点,快速定位到循环起始点

N30G71I5K1N5X. 5Z. 3F800 ; N5 表示 G71 循环总段数(包括 N40、N50、N60、

N70、N80), X 和 Z 都要编不为 0 的值(留有精车余量)

N40G00X44 ;B 点, 必须由 G00 完成, Z 向不能有移动

 N50G01Z-17F200
 ;C点

 N60X54
 ;D点

 N70X65Z-23
 ;E点

 X 向总深度与 N40 段的深度 (A->B) 相当

 只能是插补指令 G01、G02、G03, 不能有

 N80X70
 ;F点(精车结束点)」M、S、T指令

 N90G0X100Z50
 ;退刀到安全位置(回起刀点P)

N100M02

2.2.28 G72——端面切削复合循环

格式: G72 I_ K_ N_ X_ Z_ F_

说明:该指令执行图 2-10 所示的粗加工和精加工,其精加工路径为 A→B→C→D 的轨迹。

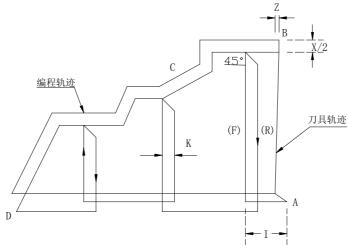


图 2-10 端面切削复合循环 G72

其中: I: 切削深度(每次切削量),指定时不加符号,方向由矢量AB决定;

K: 每次退刀量,指定时不加符号,X和Z轴间方向分别由X(X方向精加工余量)和Z(Z方向精加工余量)的符号决定;

- N: 精加工程序段数;
- X: X 方向精加工余量;
- Z: Z 方向精加工余量;
- F: 粗加工时 G72 中编程的 F 有效, 而精加工时处于精加工程序段内的 F 有效。

G72 切削循环下,切削进给方向平行于 X 轴, X 和 Z 的符号如图 2-11 所示。其中 (+)表示沿轴正方向移动,(-)表示沿轴负方向移动。

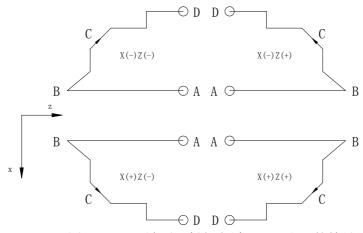


图 2-11 G72 端面切削复合循环下 X 和 Z 的符号

注意: (1)N(精加工程序段数)要比1大;

- (2) A→B 必须是 G00 指令完成, B→C→D 内不能包含 G00 指令;
- (3) $A \rightarrow B$ 程序段中不应有 X 向移动量,Z 向移动量与 $B \rightarrow C \rightarrow D$ 的 Z 向移动总量相等。

例: N0010 G00 X520 Z370

N0020 G72 I7 K2 N8 X0.37 Z0.29 F2400

N0030 G00 X520 Z40

N0035 G01 X500 Z90 F240

N0040 G01 X320 Z140

N0060 G01 X320 Z210

N0070 G01 X200 Z210

N0080 G01 X200 Z270

N0090 G03 X100 Z320 I0 K50

N0095 G02 X0 Z370 I-100 K0

N0100 G00 X520 Z370

N0120 M02

2.2.29 G73——封闭轮廓复合循环

格式: G73 I_ K_ N_L_ X_ Z_ F_

说明:该功能在切削工作时刀具轨迹为图 2-12 所示的封闭回路,刀具逐渐进给,使封闭切削回路逐渐向零件最终形状靠近,最终切削成工件的形状,其精加工路径为 A→B→C →D 的轨迹。

这种指令能对铸造、锻造等粗加工中已初步成型的工件,进行高效率切削。

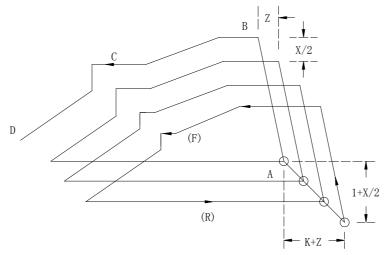


图 2-12 封闭轮廓复合循环 G73

其中:

I: X轴方向的粗加工总余量:

K: Z轴方向的粗加工总余量;

N: 精加工程序段数;

L: 粗切削次数:

X: X方向精加工余量;

Z: Z方向精加工余量;

F: 粗加工时 G73 中编程的 F 有效, 而精加工时处于精加工程序段内的 F 有效。

注意: I 和 K 表示粗加工时总的切削量,粗切削次数为 L,则每次 X、Z 向的切削量为 I / L、 K / L:

例: N0010 G00 X540 Z390

N0020 G73 I440 K60 N6 L20 X0.6 Z0.3 F2400

N0030 G00 X80 Z370

N0040 G01 X80 Z270 F240

N0050 G01 X150 Z140

N0060 G02 X350 Z40 I200 K0

N0070 G01 X400 Z20

N0080 G01 X520 Z00

N0090 G00 X540 Z390

N0110 M02

运用这组复合循环指令,只需指定精加工路线和粗加工的吃刀量,系统会自动计算粗 加工路线和循环次数。

2.2.30 G74——返回参考点(机械原点)

格式: G74 X_ Z_

说明: (1)本段中不得出现其他内容。

- (2) G74 后面出现的坐标将以 X、Z 顺序依次回零。
- (3) 使用 G74 前必须确认机床装配了参考点开关。

2.2.31 G75——以机床坐标返回加工开始位置

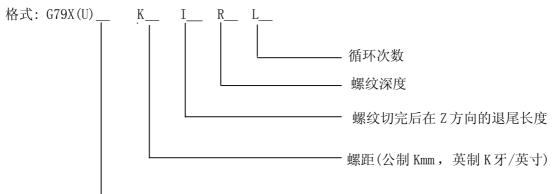
格式: G75 X Z

说明: (1)本段中不得出现其他内容。

(2) G75 指令执行后, X Z 轴运动到机床坐标 XP, ZP 为 P8#、P9#参数设定的坐标

位置。

- (3) G75 执行完毕后, X Z 轴的工件坐标(大坐标)恢复为 P18#, P19#设定的值。
- (4) B033=1(上电无须回零模式)时, G75 无效。
- (5) G75 将 Y 轴运动到机床坐标 YP 为 P24#设定的坐标值,并恢复 PB4#设定值为 Y 轴 的工件坐标。
 - (6) G75 功能须保证开始位置的机床坐标与工件坐标是其实际刀具在该位置的坐标。


2.2.32 G76——从当前位置返回加工起始点(进刀点)

格式: G76 X Z

说明: (1)本段中不得出现其他内容。

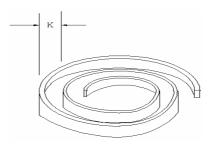
- (2) 机床上相对于原点的坐标以大坐标显示,加工开始的刀具位置坐标记忆于 P18 #、P19 # 参数,该功能可从机床任意位置回到该处,速度与 G00 相同。
- (3)加工开始点(P18#、P19#)是参考加工原点(如卡盘中心)所设定的点, G75 执行的结果是使刀尖移动到工件坐标与参数 P18#、P19#相同的坐标位置。
- (4)Y轴对应的进刀点的工件坐标为PB4#(P114#)。

2.2.33 G79 ——公制端面螺纹循环

「螺纹终点 X 轴坐标. 绝对、相对坐标编程均可

- 注(1)端面螺纹加工中的参数设定同G86直螺纹,详细说明请参照2.2.38节。
 - (2)端面螺纹无单刀切削.
 - (3) 端面螺纹无旋进切削功能.

举例


N0010 G0 X 100 Z 100

N0020 G0 X 50 Z 0

N0030 G79 X 0 K2 R1 I4 L6

N0040 G0 X 100 Z 100

N0050 M02

2.2.34 G80 — 英制端面螺纹循环.

格式:同 G79.

注:螺距为 K牙/英寸.

2.2.35 G81——外圆(内圆)固定循环

格式: G81 X_ Z_ R_ I_ K_ F_

说明: (1) 在绝对坐标模式下, X、Z 为另一个端面(终点)的绝对坐标,

增量编程模式下, X、Z 为终点相对于当前位置的增量值。 (2) R 为起点截面的加工直径。

- (3) I 粗车进给量, K 精车进给量, I、K 为有符号数, 并 且两者符号应相同。符号约定如下:由外向中心轴切削(车外圆)为"-",反之为"+"。
- (4) 不同的 X、Z、R 值决定外圆不同的形状,如:有锥度或没有锥度,正向锥度或反向锥度,左切削或右切削等。
 - (5)F为切削加工的进给速度(mm/min)。
 - (6)加工结束后,刀具停止在终点上。
- 例 1: 正向锥度外圆,进行左切削

G90 G81 X40 Z100 R30 I-1 K-0.2 F200 (绝对值编程)

G91 G81 X0 Z-50 R30 I-1 K-0.2 F200 (增量编程)

加工过程:

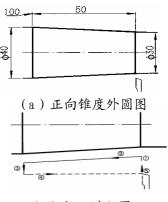
- ① G01 进刀 2 倍 I (第一刀为 I,最后一刀为 I+K 精车),进行深度切削;
- ② G01 两轴插补,切削至终点截面,如果加工结束则停止;
- ③ G01 退刀 I 至安全位置,同时进行辅助切面光滑处理;
- ④ G00 回刀 ΔZ 到起点截面;
- ⑤ G00 快速进刀至离工件表面 I 处,预留 I 进行下一步切削加工; 重复至①。
- 例 2: 无锥度外圆,进行左切削

G90 G81 X30 Z100 R30 I-1 K-0.2 F200(绝对值编程) G91 G81 X-10 Z-50 R30 I-1 K-0.2 F200(增量编程) 加工过程例 1

例 3: 反向锥度外圆,进行左切削 考虑到终点处的切削量,刀具在起点处应离工件适 当距离(≥ΔΦ)

G90 G81 X30 Z100 R40 I-1 K-0.2 F200 (绝对值编程)

G91 G81 X-30 Z-50 R40 I-1 K-0.2 F200 (增量编程)


加工过程:

- ① G01 进刀 2 倍 I(第一刀为 I,最后一刀为 I+K 精车),进行深度 切削;
- ② G01 两轴插补,切削至终点截面,如果加工结束则停止;
- ③ G01 退刀 I,同时进行辅助切面光滑处理;
- ④ G00 快速退刀 Δ Φ 至安全位置:
- ⑤ G00 快速回刀至起点截面; 重复至①。
- 例 4: 反向锥度外圆,进行右切削 绝对值编程:

G90 G81 X40 Z150 R30 I-1 K-0.2 F200 增量编程:

G91 G81 X0 Z50 R30 I-1 K-0.2 F200 加工过程同例 1

例 5: 反向锥度内圆,进行左切削 G90 G81 X30 Z100 R40 I1 K0.2 F200

(b) 加工过程图

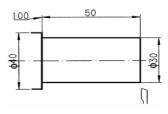


图 2-13 无锥度外圆

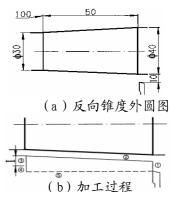


图 2-14 反向锥度外圆左切削

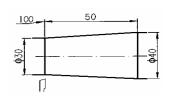


图 2-15 反向锥度外圆右切削

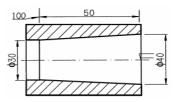


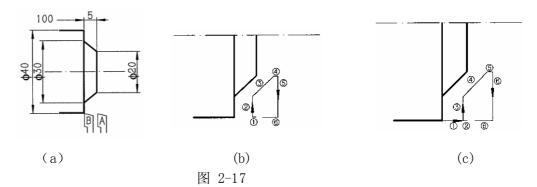
图 2-16 反向锥度内圆左切削

(绝对值编程)

G91 G81 X30 Z-50 R40 I1 K0.2 F200

(增量编程)

加工过程:


类似于例1,区别在于退刀时刀具向中心轴方向退刀。

2.2.35 G82——端面固定循环

格式: G82 X Z R I K F_

说明: (1)在绝对坐标模式下, X、Z为另一个端面(终点)的绝对坐标,增量编程模式下, X、Z为终点相对于当前位置的增量值。

- (2) R=(终点直径一起点直径),终点(起点)直径在终点(起点)截面上最终锥体直径。 在将工件截短的平端面加工时,终点直径与起点直径均为零。R 为有符号数,"+"表示终 点直径大于起点直径,"-"则相反。
- (3) I 粗车进给, K 精车进给, I、K 为有符号数,并且两者符号应相同。符号约定如下:向左切F削加工时为"+"(可省略),向右切削加工时为"-"。
- (4)不同的 X、Z、R、I 值决定端面不同的形状,其中,R 值决定是否有锥度,R=0 时端面没有锥度;如果在绝对模式下同时有 X=0,R=0,则将工件截短,并且端面车平;R 的符号决定了有锥度端面的锥度方向;Z、R、I 的符号共同定了锥度端面的切削方式,分内切削和外切削两种。对于各种情况的编程,以下将举例作详细说明。
 - (5)F切削加工的进给速度(mm/min)。
- (6)对于没有锥度的端面,加工长度没有限制;对于有锥度的端面,加工长度限制在两端面之间的长度,并且加工开始前刀具须停在两端面之一上。加工结束后,刀具停止在编程终点上。

加工过程:

- ① G01, Z方向进刀 2 倍 I (第一刀为 I, 最后一刀为 I+K 精车)进行长度切削; G01, X方向进刀至终点处,进行深度切削;
- ③ G01 两轴插补,切削至另一端面; G01, Z方向退刀 I 至安全位置,同时进行辅助切面光滑处理;
 - ⑤G00, X 方向退刀到起点处;
 - ⑥G00, Z 方向快速进刀至离工件表面 I 处, 预留 I 进行下一步切削加工;
 - ⑦ 如果加工结束则 G01 进刀至终点处,停止,否则重复至①。

从B处开始

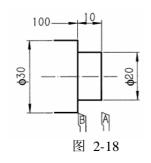
G90 G82 X20 Z105 R-10 I-1 K-0.2 F200 (绝对值方式)

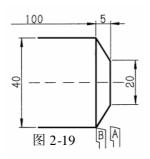
G91 G82 X-20 Z5 R-10 I-1 K-0.2 F200 (增量方式) 加工过程:

- ① G00, Z方向快速进刀至 A 处;
- ② G01, Z方向进刀 2 倍 I (第一刀为 I, 最后一刀为 I+K 精车),进行长度切削;
- ③ G01, X方向进刀至终点处,进行深度切削;
- ④ G01 两轴插补,切削至另一端面;
- ⑤ G01, Z方向退刀 I 至安全位置,同时进行辅助切面光滑处理;
- ⑥ 如果加工结束则 G01 进刀至终点处,停止: 否则, G00, X 方向退刀到起点处:
- ⑦ G00, Z方向快速进刀至离工件表面 I 处, 预留 I 进行下一步切削加工;
- ⑧ 重复至②。
- 例 2: 锥度无台阶的端面循环,初始时刀具可停在 A 或 B 位置上从 A 处开始

G90 G82 X20 Z100 R0 I-1 K-0.2 F200 (绝对值方式)

G91 G82 X-10 Z-10 R0 I-1 K-0.2 F200 (增量方式)


加工过程: 类似例 1. A,不同在于没有第③步。


从B处开始

G90 G82 X20 Z110 R0 I-1 K-0.2 F200 (绝对值方式)

G91 G82 X-10 Z10 R0 I-1 K-0.2 F200 (增量方式)

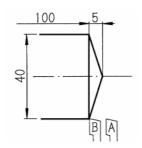
加工过程: 类似例 1.B, 不同在于没有第40步。

例 3: 锥度无台阶的端面循环,初始时刀具可停在 A 或 B 位置上从 A 处开始

G90 G82 X40 Z100 R20 I-1 K-0.2 F200 (绝对值方式)

G91 G82 X0 Z-5 R20 I-1 K-0.2 F200 (增量方式)

加工过程: 类似例 1. A,不同在于没有第②步。


从B处开始

G90 G82 X20 Z105 R-20 I-1 K-0.2 F200 (绝对值方式)

G91 G82 X-20 Z5 R-20 I-1 K-0.2 F200 (增量方式)

加工过程: 类似例 1.B, 不同在于没有第③步。

根据不同的 X、R 值还可以编程以下图形:

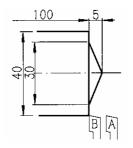
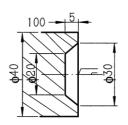



图 2-20

例 4: 有台阶的凹端面循环。由中心向外加工时,刀具应停在中心位置,以保证退刀回刀时不会撞刀

G90 G82 X20 Z100 R-10 I-1 K-0.2 F200 (绝对值方式)

G91 G82 X20 Z-5 R-10 I-1 K-0.2 F200 (增量方式) 以上例子中,若将 I、K 符号同时改变为"+",则图形以 X 轴镜象,进行右加工。

2.2.36 G83——深孔加工循环

用于 Z 轴的间歇进给。每次进给切削后都快速退刀到孔顶位置并暂停 PAO#参数设定的 秒数(以利于排屑),之后快进到距上一次孔底 K 距离的位置。进行又一次的切削进给循环,直到切削到 I 代表的孔底位置。暂停 R 指定的秒数,最后快速退刀到孔顶位置,G83 指令段执行结束。

格式 1:

G83 X__ Y__ Z__ I__ J__ K__ R__ F

格式 2.

G83 X__ Y__ Z__ D__ I__ J__ K__ R__ F

与格式1的区别在于用D参数指定第一刀切削深度(推荐大于J)

- Z: 孔顶坐标
- I: 孔底坐标
- J: 每次进给深度(无符号数)
- K: 每次退刀后,再次进给时,由快进转换为工进时距上一次孔底的距离(无符号数)
- R: 孔底延时时间
- D: 第一刀切削深度(无符号数)
- F: 进给速度

例 1: G92 X60 Z130

M03 S500

G90 G83 X100 Z90 I30 J20 K10 R1 F600

M02

例 2: G92 X60 Z130

M03 S500

G91 G83 X40 Z-40 I-60 J20 K10 R1 D30 F600

M02

G83 指令动作循环见图 2-23 如示:

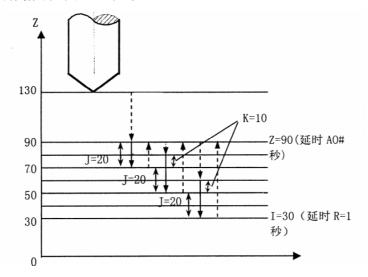


图 2-22 G83 指令动作图

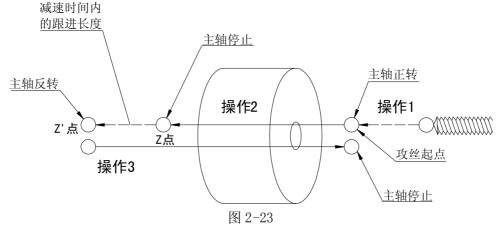
2.2.37 G84——公制刚性攻丝循环

格式: G84 Z__ K__ L__ N __

说明: (1) G84(G85)只能在安装了主轴编码器的情况下使用。

- (2) Z 为攻丝终点坐标, K 为螺距。
- L: 材料补偿量,取值范围 0-15,一般材料取 0(不编 L 值),脆性材料可以加大 L 提高攻丝转速。粘贴材料适当加大 (5-10) 可以减小断丝功的可能。L 不编则由 P87#决定。
- N: 当攻丝进给达到 Z 值后系统发出主轴停止信号,当主轴降至 N 设定转速时,系统发出反转信号,从而减少换向时间,N 不编时系统检测到主轴转速降到 0 后才发出主轴反向信号。
- 对于主轴是变频调速时,由于变频器本身的特性,编写 N 将不起作用。
- (3) 刚性攻丝时主轴转速的选择。

刚性攻丝时主轴每转一转, Z 向沿主轴轴向进给一个螺纹螺距, 主轴加减速时也严格维持这一关系。攻丝时主轴倍率, 进给倍率被禁止。


刚性攻丝时 Z 向的进给与主轴同步,当攻丝进给到达 Z 值后,系统发出主轴停止信号,主轴从设定转速降到零速值的这段减速时间内 Z 向仍然是在跟进(主轴减速时间越长,跟进长度越大),为了减少减速时间内的跟进长度,应尽量减小主轴升降速时间。

攻丝进给速度与主轴转速有如下的比例关系:

$$F=S \times K$$
 (式 2-1)

式中:

F——攻丝进给速度; S——主轴转速; K——丝攻螺距;

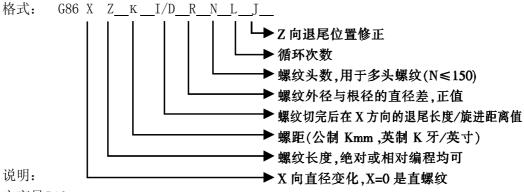
说明:

操作1. 快速定位到攻丝起始点, 主轴正转。

操作2. 攻丝进给到 Z点, 主轴停。

操作3. 主轴反转,丝攻退回到起始点主轴停。

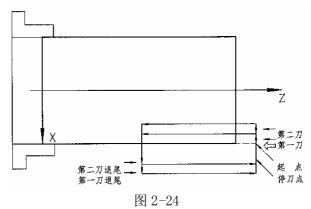
2.2.38 G85——英制刚性攻丝循环


格式: 同 G84。

说明: 螺距为 K 牙/英寸。

2.2.39 G86——公制螺纹循环

G86(G87)为螺纹加工循环,通过参数宏变量,加速度等选项设置.可以实现各种进刀方式,退尾方式,直,锥,管螺纹、端面螺纹(G79)、公英制螺纹、小孔螺纹,各种非 60°螺纹刀的牙型加工,由于 G86(G87)功能较为复杂,请认真阅读本节,尤其在加工特殊要求螺纹时,请


注意各种参数与变量的配合.

宏变量 P10,

P11, P12 专用于设定螺纹加工的其他参数。

- (1) 每次进刀方式由程序前面 P10 和 P11 赋值语句决定,最后一刀 X 向单边进刀光整螺纹面。 (是否光刀由 P25 # 参数决定)
- (2)螺纹在 X 向退尾方向由 I 值决定, "+"为外螺纹, "-"为内螺纹。
- (3加工循环的起始位置为将刀尖对准螺纹的顶径处。
- (4) J 值表示 Z 方向退尾位置的修正(见后面说明)。

- (5)当需要等螺距收尾时,可使用退尾修正功能,其格式为通常的 G86 指令中增加 J 值。J 值不编时,一般 Z 向运动到接近终点时 X 向才退尾。
- (6) 在 G86 中 X 向退尾长度正常以 I 后面的值表示,当编 D 时,表示螺纹进刀为旋进。用旋进功能时注意: 开始进刀时,刀尖必须位于工件表面外距离 \geq D 值,否则将撞刀,旋进距离等于退尾距离(X 向)。I 值不编用于加工小孔螺纹的定点退刀,此时 X 向退刀方向由 R 的正负号决定。
- (7) 根据 I、J、D 的编程,可以有各种组合,以下为常见的几种:

a) G86	Z-100	R2	К3	L10	15		普通螺纹加工
b) G86	Z-100	R2	К3	L10	15	Ј6	离 Z 向正常退尾位置提前 6mm 退尾
c) G86	Z-100	R2	К3	L10	D5		旋进切人但没有等螺距退尾
d)G86	Z-100	R2	К3	L10	D5	Ј6	旋进旋出离 Z 向正常退尾位置提前 6mm 退尾
e) G86	Z-100	R-2	К3	L10			外螺纹定点退刀循环切削
f) G86	Z-100	R2	К3	L10			内螺纹定点退刀循环切削
g) G33	Z-100	R-2	К3				单刀外螺纹切削
h) G33	Z-100	R2	К3				单刀内螺纹切削

用户可根据具体情况灵活设置各种编程参数。

旋进切入的角度和切入位置根据螺纹加工速度(主轴转速×K 螺距)、X 向旋进旋出时间常数和速度速度(P16#, P49#, P59#)、螺纹加工时 Z 向时间常数和速度(P40#, P45#)的不同

而有不同的角度。

(8) P16#参数表示 X 向旋进 / 旋出的速度, 一般编程值 200mm / min-6000mm / min, 但当设定值<100mm / min, 时,系统加工时自动调整到 2500mm/min。

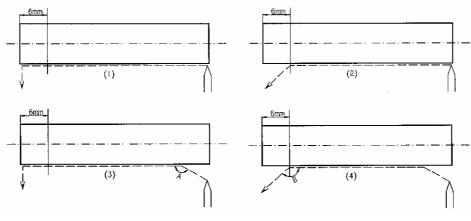


图 2-25

(9) 对于螺纹切削时每刀的切深,可在程序中自由设定,采用赋值语句 P10=0,1,2。a、当 P10=0 时,螺纹切削时等距离进刀,即每次进刀量为 R/L,当 P25#参数不等于 0 时,最后增加一刀光刀(记入总切削量 R)。b、当 P10=1 时,等切削量进刀。对于 60 度螺纹刀可

保证每次进刀的金属切削量基本相同。每刀切削量为: $\Delta Rn = (\sqrt{n} - \sqrt{n-1}) \times R/\sqrt{L}$,

 Δ Rn: 第 n 次进刀量。n: 第 n 次进刀。n≤L。 L: 循环次数,R: 总切深。c、当 P10=2 时,等切削量进刀,将 P10=1 时的第 1 刀分为两刀切削。如果觉得第一刀切削量太大,可将 P10 设为 2,系统将第一刀分为两刀切削,以免损伤刀尖例如当 R=1.0,L=5 时,有:

P10	第一刀	第二刀	第三刀	第四刀	第五刀	第六刀	第七刀
0	0. 2	0. 2	0.2	0. 2	0. 19	0. 01	/
1	0. 45	0. 19	0.14	0. 12	0.09	0. 01	/
2	0. 23	0. 22	0. 19	0. 14	0. 12	0.09	0.01

(10)对于螺纹切削方式在程序中也可以自由设定,采用赋值语句 P11=0、1、2、3

P11=0: 刀刃沿螺纹牙型中线切入

P11=1: 刀刃沿螺纹牙型左边切入

P11=2: 刀刃沿螺纹牙型右边切入

P11=3: 刀刃沿螺纹牙型左边、右边轮流切入

例: N0010 P10=2 P11=0

N0020 G00 X100 Z100

N0030 G00 X50 Z1

N0040 G86 Z50 K1 R1.1 I6 L5

N0050 G00 X100 Z100

N0060 M02

如果这以上进刀方法仍然不能满足要求,可采用G33单刀螺纹循环自定义切深。

- (11) 螺纹加工的开始及结束时有升降速过程,在此时间内,螺纹是不准确的,因此实际加工时必须避开这二个区域。P40#和 P45#参数定义了螺纹加工时 Z 向加速度可调速升降速长度。
- (12) 螺纹加工时 Z 向步进 / 伺服电机的进给速度不应超过某一值,如 4m / min,该速度与机床大小及电机功率有关。
 - (13) 螺纹在切削前,系统测主轴转速,定出步进电机的最佳升降速过程,并判断主轴

转速是否稳定,等到编码器的零信号出现后,开始加工,这过程需 50-100 毫秒,若主轴转速不稳定,系统需等到主轴转速稳定后才开始加工。若测不到稳定的速度,一般不会进行螺纹加工。P23#参数表示主轴转速波动的百分比,正常取 5-15,实际加工时主轴转速波动率应≤P23#参数。

(14) P25#参数,设定螺纹最后一刀的光刀量,若螺纹加工循环最后不要光刀,P25#参数应=0。

注意: 旋进(D 值有效)时,只能加工直螺纹。J必须是正值。

(15) 定点退刀

在加工小孔内螺纹时,由于退刀空间限制,I 值不能定义,X 向只能退到加工开始位置。 X 向的退刀方向由 R 的正负号决定。

格式:

G86 Z-30 K1 R1.5 L3 (内螺纹)

G86 Z-30 K1 R-1.5 L3 (外螺纹)

(16) 提前退尾与滞后退尾(J值)

不编 J 值, X 向正常退尾, 退尾位置发生在 Z 向降速开始时。

J>0时,X向退尾位置比正常退尾位置提前Jmm。

说明:例如不编 J 值时 X 向退尾发生在 Z 坐标为 50。如 J 的编程值为 3,此时 X 向退尾发生在 Z 坐标为 53 处。

J<0 时,J 是一个百分比,X 向开始退尾的位置比 Z 向正常位置滞后,滞后长度等于 Z 向退尾长度的 J%。

J=0 时,等同于正常退尾位置。

J=-100 时, 等同于螺丝加工到全部长度(螺丝根部)时才退尾。

0≤J≤100时, X 向退尾点发生在螺丝根部与 Z 向正常退尾位置之间。

(17) 单刀螺纹

当螺纹进刀使用等距进刀或等切削量进刀仍不能满足要求时,可采用单刀螺纹循环G33/G34人工设定每次切入深度(G33/G34分别为公/英制)

请看一段程序(M45×1的外螺纹)

G0 X50 Z100

; 到螺纹端面

G33 Z55 K1 R-6.5

: 螺纹切入 1.5mm

G33 Z55 K1 R-7.3

; 螺纹切入 0.8mm

G33 Z55 K1 R-8.5

; 螺纹切入 1.2mm

G33 Z55 K1 R-8.7

; 螺纹切入 0.2mm 光刀

.....

GO X70

M02

- 注意: a) 使用单刀螺纹循环时,两段 G33 之间主轴转速变化不得大于 P23#。
 - b) 修改过 Z 向加速度 (P40#、P45#) 后,必须使用新工件重新加工。
- (18) 螺纹品质改善:
- a) 柔性处理:

系统设定 P80#KP, P81#KI, P82#KD 参数可改善螺纹加工的跟随性能及 X、Z 向电机的运行品质。

对于脉冲输出的系统控制模式只采用 KP (P80#), KI 与 KD 应设为零。

在 B091=1 时, KP 有效, KP≤100, 越小则螺纹加工的平稳性越好,但微观螺距误差略加大(无螺距积累误差),在螺距不变时,可提高主轴转速,提高主轴光洁度,KP 不宜太小,一般 KP=75~100,当 KP=100 能满足加工要求时,建议不使用 KP,即 B091 设为 0。

b) 快速退尾:通过调整主轴转速, $X \times Z$ 向加速度,以及 J 值,可实现各种品质的螺纹尾部形状。

加大 P45#,减少 P40#,可提高 Z 向加速度,使螺距的升降速长度减少,加大有效螺纹长度。

加大P16#, P49#, 减小P59#, 可推迟X向退尾时间, 有助于改善螺纹末端的牙深均匀性。

亦可通过改变 J 值及正负号来改善螺纹退尾时的品质: J>0,并减小 X 向加速度,可形成多圆逐渐变浅的收尾,J<0,加大 X 向加速度,适当减小 Z 向加速度,可形成很短的收尾糟。

- (19) 与螺纹加工有关的参数一览表:
- a) P59#: 螺纹 X 向旋进/旋出速度上限,与 P49#合并计算加速度,旋出与退尾同样动作。
 - b) P20#: 编码器线数

本参数必须与机床上装配的主轴编码器每相每转脉冲数吻合,否则会造成加工螺距不准并影响加工品质。

系统对编码器脉冲 4 倍频, 1200 线的编码器系统将检测出 4800 线

c) P25#: 螺纹最后一刀光刀量

螺纹 X 向进刀若干次完成(由 L 决定), 当 $P25#\neq 0$ 时, X 向每刀进给量由 R 值减去 P25#,然后分 L 次切削,最后执行一次光刀加工,全部循环数为 L+1

d) P40#、P45# 螺纹加工时 Z 轴时间常数与速度上限

合并计算 Z 向加速度,但并不据此确定 Z 向的加工速度。

e) P49#、P59# 螺纹切削时 X 向旋进旋出时间常数与速度上限

当加工无进退刀槽螺纹时,决定 X 切入及退尾的加速度

f) P88#: 螺纹 X 向进刀的实际速度

X 轴切入螺纹时以 G01 运动切入螺纹的实际速度。

g) P84#: 1#螺纹牙尖角

P85#: 2#螺纹牙尖角

正常螺纹刀为 60° 尖角,当加工螺纹采用单边切削时(P11=1、2、3,并且牙尖角 \neq 60°)。此时就必须由P84#,P85#定义螺纹的牙尖角。P84#,P85#的意义:当P11 \neq 0(即沿螺纹单边切削时)

P12=0: 60° 牙尖角

P12=1: 55° 牙尖角

P12=2: 65° 牙尖角

P12=3: 用户定义的牙尖角, 由84#参数决定

P12=4: 用户定义的牙尖角,由 85#参数决定

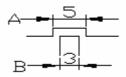
P84#、P85#为牙尖半角的正切值并乘以10000。

例如: 62°的牙尖角

$84\#/85\#=10000\times tg\frac{62^{\circ}}{2}=6009$

(式 2-2)

例:加工一牙尖角为 62°,而且刀刃沿牙型的左边切入(设定 P85#为 6009) N0100 P11=1 P12=4


N0110 G86 Z50 K2 I4 R1 L3

如采用标准 60° 螺纹刀具,或不采用单边切削方式,则无须采用 P12 宏变量。

T型螺纹的编程说明

1) 在编螺纹程序前必须用赋值语句对 T 型螺纹的牙型进行赋值

- 2) P12=5 (T型螺纹加工)
- 3) P0=A-B (螺纹底宽度-刀尖宽度), P0≤2倍的刀宽

- 4) 当系统参数 P25=0 时,建议螺纹循环次数 L=奇数,例: L7, L9 等。
- 5) 当系统参数 $P25 \neq 0$ 时(光刀量 $\neq 0$ 时), 建议螺纹循环次数 L=偶数, 例: L8, L10 等。
- a) 编程实例:
 - a: 螺纹底宽度 A=5,
 - b: 刀尖宽度 B=3,
 - c: 系统参数 P25=0.1 (光刀量)

N0010 P12=5 P0=2

N0010 M03 S1000 T1

N0010 G0 X100 Z50

N0010 G0 X30 Z10

N0010 G86 Z-50 K6 R3 I8 L10

N0010 G0 X100 Z50

N0010 M02

N0010

b) T型螺纹无等切削量加工

螺纹第一刀沿槽宽中间加工,从第二刀开始,左右槽边依次加工,当 P25=0 时,螺纹循环次数为 L 次,P25 \neq 0 时,螺纹循环次数为 L+1 次。最后一刀 X 向无进给,保证牙底等深。 T 型槽两边的切削量:

- 1、当 P25=0 时, T型槽每次每边切削量为 P0/L-1
- 2、当 P25≠0 时,每次切削量为 P0-P25/L-2 最后二刀 T 槽切削量为 P25,而 X 向进刀为:倒数第二刀 X 进 P25,最后一刀 X 向进深 0。

2.2.40 G87——英制螺纹循环

格式:同G86。 注:螺距为 K牙/英寸。

2.2.41 G90——绝对值方式编程

格式: G90

说明: (1) G90 编入程序时,以后所有编入的坐标值全部是以编程零点为基准的。

(2)系统上电后,处在 G90 状态。

例: N0010 G90 G92 X20 Z90

N0020 G01 X40 Z80 F100

N0030 G01 Z60 F50

N0040 G03 X60 Z50 I0 K-10

N0050 M02

2.2.42 G91——增量方式编程

格式: G91

说明: G91 编入程序时,之后所有坐标值均以前一个坐标位置作为起始点来计算运动的编程值。在下列坐标系中,始终以前一点作为起始点来编程。

例:N0010 G91 G92 X20 Z85

N0020 G01 X20 Z-10 F100

N0030 Z-20

N0040 X20 Z-15

N0050 M02

G90, G91 适用于 X, Y, Z(A)的编程, 即 G90 有效时 X, Y, Z(A)的值为绝对量, G91 有效时, X, Y, Z(A)的值为增量编程, 而对于 U, V, W, 无论是 G90 或 G91, 均为增量编程.

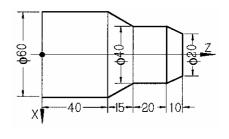


图 2-26

同一语句中可以 X, Z, U, W 混合编程, 如 N10 G90 G01 X100 W20 F100

2.2.43 G92——设定工件坐标系

格式: G92 X Z

说明: (1) G92 只改变系统当前显示的坐标值,不移动坐标轴,达到设定坐标原点的目的。

- (2) G92 的效果是将显示的刀尖坐标改成设定值。
- (3) G92 后面的 XZ 可分别编入,也可全编。

2.2.44 G96——恒线速切削

格式: G96

说明: (1)恒线速切削只适用于有模拟量输出的系统,控制主轴无级变速。

- (2) 当 G96 执行时,CNC 以此时的切削速度为基准,根据 X 方向是进刀还退刀 线性调整主轴的转速。
- (3) 当主轴的转速达到系统的额定最大转速或最低转速时(由 P26#, P28#限定)时, X 向连续进刀、退刀,主轴的转速不再变化。
- (4) G96 由 G97 及 M05、M02 等指令来取消。
- (5) 由于主轴变频器有升 / 降速时间设定, 当 G96 生效时, 变频器的升 / 降时间常数越短, 则主轴转速的跟随性越好。
- (6) 当 G96 有效, 而此时 X 值为 0, 系统报警(线速度为 0).

2.2.45 G97——取消恒线速切削

格式: G97

2.2.46 G98——取消每转进给

格式: G98

2.2.47 G99——设定每转进给

格式: G99 FXXXXXX

说明: G99 后面的 F XXXXXX 为每转进给的距离,单位为 μ m、即 F 后面只能为整数。这与每分钟进给的单位不同。

2.3 辅助功能 (M功能)

M功能也称辅助功能,用于 CNC 输入输出口的状态控制。辅助功能由字母 M及后面两位数组成,数控系统的辅助功能如下:

M00 程序暂停

- M01 条件暂停
- M02 程序结束
- M03 主轴正转
- M04 主轴反转
- M05 主轴停止
- M08 开冷却液
- M09 关冷却液
- M10 工件夹紧
- M11 工件松开
- M12 主轴高速档继电器开
- M13 主轴高速档继电器关
- M20 开指定的继电器
- M21 关指定的继电器
- M24 设定刀补号
- M25 并行换刀时等待换刀结束
- M28 伺服主轴设定为速度模式
- M29 伺服主轴设定为位置模式

M41~M44 指定主轴档位转速

M71~M85 M功能脉冲输出

M 功能是用来使机床外部开关接通或断开的功能,如主轴启动、停止,冷却电机接通或断开。M 功能常因机床生产厂家及机床结构和型号不同,与标准规定的 M 功能有差异。下面就 M 功能作详细说明。

2.3.1 M00——程序暂停

格式: M00

说明:程序里出现 MOO,本段程序运行结束后暂停等待。按下加工启动键,程序继续运行。

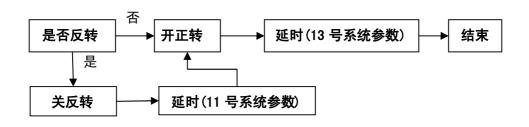
2.3.2 M01——条件暂停

格式: MO1 KXX 或 MO1 LXX

说明: K(或L)后二位数对应于某 I/0 口的编号,程序执行到此处便停下等待,直到外部向该 I/0 口输入一低有效(或高有效)的信号,程序向下执行。要求外部电平有效时间 >15 毫秒。K 为高电平有效,L 为低电平有效。系统的输入口编号定义存储在系统中,可在参数——诊断界面中查到每个输入口的输入号。

2.3.3 MO2——程序结束

格式: M02

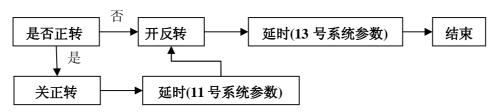

说明: (1) MO2 结束加工程序。

(2) 当程序中不编 M02, 若位参数 B003 = 0, 程序结束后关主轴 (M05) 和冷却 (M09)。 若位参数 B003=1 并且不编 M02, 程序结束后不关主轴和冷却, 仅结束本次循环。

2.3.4 M03——主轴正转

格式: M03

说明: (1)程序里写有 MO3 指令,首先使主轴正转继电器吸合,接着 S 功能输出模拟 量,控制主轴顺时 MO3 针方向旋转。它控制 MO3 吸合继电器。MO3 动作顺序:



- (2) 若 B012=0, M03 为保持输出
- (3) 若 B012=1, M03 为脉冲输出, 脉冲延时由 P13 # 参数决定

2.3.5 M04——主轴反转

格式: M04

说明: (1)控制 MO4 继电器, 启动主轴反转。MO4 动作顺序:

- (2) 若 B012=0, M04 为保持输出
- (3) 若 B012=1, M04 为脉冲输出, 脉冲延时由 P13 # 参数决定

2.3.6 M05——主轴停止

格式: MO5

- 说明: (1) M05 指令输出脉冲信号,关主轴正或反转控制继电器,停止输出模拟量,主轴旋转停止。输出脉冲信号宽度由 P14#参数决定。控制 M05 继电器功率输出。
 - (2) 如果 P12#参数值≠0,系统还输出短信号到制动继电器,提供主轴制动功能。
 - (3) 如果 B013 参数=1, M05 关 S1∽S4 继电器; B013=0, M05 不关 S1∽S4 继电器。
 - (4) M05 指令执行过程:

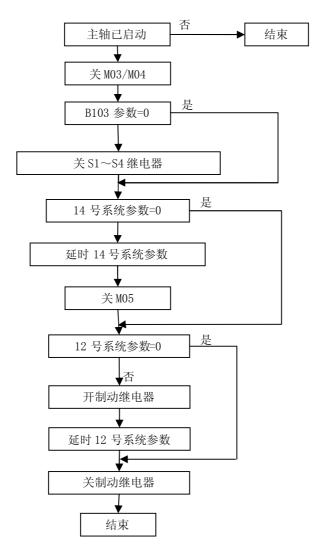


图 2-26 M05 指定执行过程

2.3.7 M08——开冷却液

格式: M08

说明: MO8 功能在本段程序开始时执行,接通冷却液控制继电器(MO8 继电器)。

2.3.8 M09——关冷却液

格式: M09

说明: MO9 功能在本段程序运行完毕后,关掉冷却液控制继电器(MO8 继电器)。

2.3.9 M10/M11——主轴夹紧松开控制

格式: M10 或 M11

说明: 详见第五章的描述。

2.3.10 M12/M13——主轴高速档继电器开/关

M12/M13 用于开/关主轴高/低速换档继电器,系统规定 M12/M13 继电器与 S3 合用。

2.3.11 M20——开指定的继电器

格式: M20 KXX

说明: K后二位数对应某继电器号,执行到该句后,系统的继电器或功率输出有效,使外部继电器吸合,并延时 0.02 秒后继续向下执行。

2.3.12 M21——关指定的继电器

格式: M21 KXX

说明: K 后二位数对应某继电器号,执行到该句后,继电器输出无效,使外部继电器断开,并延时 0.02 秒后继续向下执行。

2.3.13 M24——人为指定刀补号

格式: M24 KXX

说明:在第一次上电或其他必须改变刀补号时,它只改变刀补号而不调整工件坐标, K后二位数取值为00-10。M24不得在程序中使用。

2.3.14 M25——等待换刀结束

采取并行换刀时,换刀过程中各坐标轴电机仍然在运动。如果希望在换刀完成后才开始下一段加工,可在程序中增加 M25 指令。换刀结束后才开始下一段加工,以防撞刀。如果在退刀过程中无撞刀风险,则不需要 M25 指令,以提高加工效率。

2.3.15 M28/M29——主轴的速度/位置模式:

M28: 输出 YTRF 低电平使主轴伺服进入速度模式,用于正常的切削。

M29: 输出 YTRF 输出高电平使主轴伺服进入位置模式,与其他轴(X、Z)进行插补。 详细请见第5章5.3。

2.3.16 M41~M44——指定主轴转速档

适用于变频器驱动的机械变速主轴,见第5章5.3。

2.3.17 M71~M85---- M 功能脉冲输出

格式: M77 (以 M77 为例)

说明: 考虑到各种机床对 M 功能要求不同,系统设置了该功能,用于控制继电器板上的继电器输出短时间的通断信号,其动作顺序如下(以 M77 为例):

- (1)控制继电器板上的7#继电器,使之吸合。
- (2)延时 P15#参数, P15#参数= 0 时延时 0.4 秒。
- (3) 断开 7#继电器。

有关各继电器的输出号,显示在系统的诊断界面,或查阅技术手册。

2.4 F、S、T 功能

F、S、T 功能是进给功能、主轴功能、刀具功能的简称。

2.4.1 F——进给功能

进给功能一般称 F 功能,F 功能可以直接规定 G01、G02、G03 的进给速度,F 功能用字母 F 及数字表示,其切削进给速度为毫米/分。数控系统的进给速度从 F1-F15000mm/min 之间,用户可根据实际切削情况,任意选择。当采用每转进给时,F 为微米,即每转主轴进给多少 μ m。

2.4.2 S——主轴转速控制

主轴控制分主轴变频调速电机和主轴变速电机(双速电机、三速电机)两种。

2.4.2.1 主轴带变频电机

由 S×××、M03、M04、M05、以及一系列参数实现主轴控制,并确定主轴控制的模拟 量输出(出厂设定 0-10V)。一般机床主轴有一级手工换档,以实现不同的转速范围,使得低速时仍有较大的输出扭矩。可输出高速、低速等四档模拟电压值。

有关主轴控制见第五章的描述。

2.4.3 T——刀具功能

刀具功能也称 T 功能,用来进行刀具选择,使用电动刀架或排刀由 P05 # 参数 (=1: 电动刀架,=0: 排刀)决定。刀具功能用字母 T 及后面的数字组表示。对于电动刀架,控制回转刀架进行换刀,并改变相应刀号;对于排刀,刀号一律为 0,仅改变刀补号。

2.4.3.1 T功能格式

T n.m n: 刀号 (1-8)

m: 刀补号 (1-10)

有以下几种书写形式:

	电动刀架	排刀
Tn	换 n 号刀,用 n 号刀补	用n号刀补
Tn.0 或Tn.	换n号刀,不带刀补	同上
T0. m或T. m	不换刀,用m号刀补	用m号刀补
Tn.m	换n号刀,用m号刀补	用m号刀补
T 0. 0	无动作	无动作

2.4.3.2 刀号与刀补号

对于排刀,刀号一律为 0,通过改变刀补号来修正刀尖的偏差;对于电动刀架,刀号一律由刀架内的传感器得到,CNC 不作记忆。因此,无论排刀还是电动刀架,CNC 均可准确地了解刀号。而刀补号 CNC 无法通过外部开关得到,尤其是对于排刀以及刀号与刀补号不一样时,CNC 只能通过记忆得到刀补号,在正常工作中刀补号在 1~10 之间,但是在特殊情况下,如CNC 第一次使用、系统总清除或内存紊乱引起刀补号超出上述范围或不准时,可用 M24 人为指定刀补号,但此时有可能造成 CNC 实际坐标与显示坐标不符,这时需重新找正 CNC 坐标。

注: 若参数设定为电动刀架 (P05 # 参数=1), 而 CNC 系统未与电动刀架连接或连接不正确,或刀补号超限,此时系统会出现错误 06。

2.4.3.3 加工中修改刀补

在加工中如发现工件尺寸有变化,可实时修改刀补值,其过程如下:

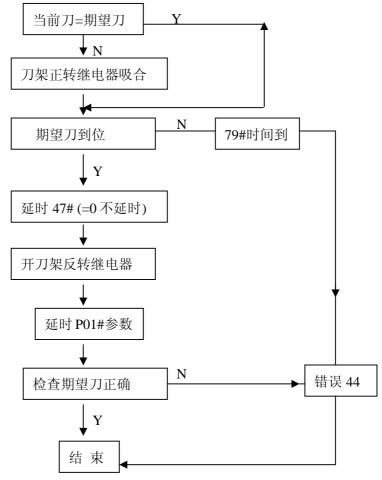
- 1. 暂停或单段有效使坐标轴电机停止运动。
- 2. 按刀补修调键。
- 3. 修改刀补值。
- 4. 启动加工循环。

注: 修补后的刀补只对后续刀具起作用,对当前刀无效。

2.4.3.4 刀补表

刀补表间接记忆了各把刀之间刀尖的差值以及刀尖的相位,也就是说,刀补值需在换刀时经计算得出来。在 PARAM 状态下,按 F1 键,屏幕上显示 10 个刀具参数,DX 为 X 方向的刀补值,DZ 为 Z 方向的刀补值,R 为刀尖圆弧半径,PH 为刀尖与工件相对位置的相位关系。

2.4.3.5 电动刀架的功能动作顺序


系统的 P5#用于设定不同的换刀方式:

P5#=0 排刀

P5#=1 常见的电动刀架。

P5#=2∽10: 用户自定义的其他刀架。

对于电动刀架,其功能在出厂时内置 PLC 的动作顺序如图所示:

2.4.3.6 对刀方法及步骤

本系统采用的试切对刀法,在产生刀补的同时,也建立了刀具的工件坐标,为了便于操作,系统提供了 X 向、Z 向单独的记忆对刀参数的方式和 X 向、Z 向同时记忆对刀方式,具体操作步骤如下:

- (1) X向、Z向单独记忆对刀
- X向对刀方法:
- ① 在卡盘上夹一毛坯件; 系统进人手动操作方式;
- ② 转动刀架,选择需要对刀的刀号,如"T1",然后选择适当的主轴转速及手动进给速度,启动主轴。
- ③ 移动刀具,用选择好的刀具在毛坯上车削出一小段外圆(或内孔),按【Xsav】键,屏幕下方出现"X 向刀偏已保存";
 - ④ 手动退出刀具,停下主轴,测量并记录切削后外圆(内孔)的直径。
- ⑤ 按【对刀】键进入刀具补偿参数界面,屏幕上显示"X0.000"(显示最后一次 X 向刀补输入值),在键盘上输入步骤 4 中所测量出的直径,按【ENTER】键确认后再按【存储/打开】键存盘。
- 注意: 若刀具在工件轴线的另一侧切削(即刀具位于轴线的反方向),则输入的直径为负值。 ∑向对刀法:
 - ① 进入手动操作方式:
- ② 再次启动主轴,移动刀架,用 n 号刀具在毛坯上车削出一端面,按【Zsav】键,屏幕下方出现"Z向刀偏已保存";

- ③ 手动退出刀具,停下主轴,测量出切削端面到卡盘端面的长度值 L:
- ④ 按【对刀】键进入刀具参数界面,屏幕上出现提示"Z 0.000"(显示最后一次 Z 向刀补输入值),在键盘上输入步骤③中所测量出的长度 L,按【ENTER】键确认后再按【存储/打开】键存盘。此时,该刀具在工件坐标系中的相对位置即已确定。

注意:每把刀在对刀时, Z 向的测量起点必须相同, 否则 Z 向产生的刀补值不正确。

- (2) X向、Z向同时记忆对刀
- ① 在卡盘上夹一毛坯件,进入手动操作方式并转动刀架,选择需要对刀的刀具,如"T1"
- ② 选择适当的主轴转速及手动进给速度,启动主轴,移动刀架,使用选择好的 T1 号刀具在毛坯上车削出一端面,按【Zsav】键,沿 X 方向退出刀具至合适位置,加工一段外圆,按【Xsav】键:
- ③ 退出刀具,停下主轴,测量出切削后的外圆直径和工件端面到卡盘端面的长度 L;
- ④ 按【对刀】键进入刀具参数界面,大光标停留在1号刀补,屏幕上出现提示"X 0.000",并有光标在后面闪烁,输入直径后再按【ENTER】键确认。此时,大光标停留在2向补偿值,并有光标在后面闪烁,屏幕上出现提示"Z 0.000",输入长度值L后再按【ENTER】键,再按【存储/打开】键存盘。刀补建立后该刀具在工件坐标系中的相对位置随之确定。

刀补的其他功能如刀补修调等, 见操作说明的刀具参数部分。

第三章 系统操作

正确操作数控系统,必须掌握各种功能的操作方法及所显示的各种信息的含义。数控系统给用户提供的可操作界面如下:

- 1. 键盘面板:接受用户对系统的指令,并据此协调系统内部状态,实现全部系统功能
- 2. 通讯接口: 可与任何配备标准RS232串行接口的计算机进行通讯。
- 3. 彩色液晶屏,实时提供各种系统信息。
- 4. 各种输入/输出接口。
- 5. USB接口:插入U盘与控制系统交换加工程序或参数文件。

3.1安全、保护与补偿

一般情况下,步进电机开环驱动由于自身原理,在发生超程堵转时不会对机械产生重大 影响,而对于交流伺服电机为执行元件的系统,在交流伺服的过载能力,输出扭矩会急剧增加,有可能发生机械损坏甚至严重事故。因此,机床的安全保护对于以交流伺服单元驱动的 机床来说尤为重要。系统通过以下诸多方面来进行限制出错的可能性。

3.1.1 急停

急停按钮应具备常开/常闭触点各一付,其中,常开触点应接到系统(见技术手册)以 便在急停按钮按下时系统进入急停状态。

急停按钮的常闭触点强烈推荐接入机床的强电柜给主回路(主轴及伺服)供电的控制回路内,以便在紧急情况时,以最高的可靠性保证主轴与伺服停止运行。

系统在收到急停信号时,切换到手动方式,出现55#报警,并封锁一切操作。

3.1.2 硬限位

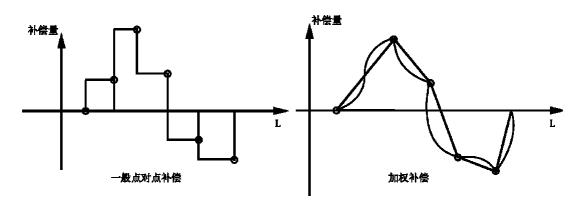
对于以交流伺服为执行元件的机床,每个轴应该装上高可靠的机械式三联行程开关,在系统软限位未起作用时强行切断主回路供电控制电路(见急停),一般三联开关:两联接入强电控制回路作为两个方向的限位输入,第三路可作为返回机床零点的初定位信号。

由于接近开关动作不能直接切断控制回路,所以一般不推荐用感应式接近开关作为伺服轴的限位开关,如必须采用,应选用 NPN 型 0C 门输出的接近开关。

3.1.3 软限位

系统提供内部定时检测功能实时监控系统的坐标是否越过人为设定的区间,一旦超过,则停止运行,切换到手动方式,并发生 40#报警,其过程由一系列参考体系构成。

- (1)由位参数 B092=0 决定是以机床坐标还是以工作坐标 (B092=1,大坐标)作为软限位的坐标基准。
 - (2)B024=0: 软限位功能返回机床参考点后有效,B024=1: 软限位功能无须返回参考点。
- (3)各轴的软限位系统参数 P60#——P65#定义,一旦系统选择的坐标(机床坐标或工件坐标)越过各轴区间,系统即报警(见参数表)。
 - (4) 当限位发生时,各轴坐标运动降速停止。
- (5)当软/硬限位降速停时,其负加速度的时间常数由 P44#参数决定,而最大速度上限则一律采用 G00 的速度以计算加速度
- (6)软限位降速停止时,会造成过冲越过软限位区,其加速度越小,越过区间则越长,可降低时间常数 P44#的方法提高加速度,减小越界长度。P44#须小于 G00 或 G01 的时间常数。


3.1.4 间隙补偿

对于具有一定反向间隙补偿的机械传动机械,系统可以补偿其造成的精度损失,但不能期望补偿后的效果与无间隙的加工质量相同,尤其是在圆弧加工过象限时,间隙值越大,对品质的影响越大,因此,机床应尽可能减少间隙值。

系统采取附加运动的原理处理间隙, 其运动的加速度由 P39#时间常数及 P48#补偿速度上限计算出。

3.1.5 丝杆螺距补偿

由于制造及温度等综合因素的影响,丝杆螺距误差从统计上讲,属于系统误差,而非随机误差,数控系统认为在两个相邻测量点之间的误差在测量距离足够小时(≤1.5—2倍螺距) 其误差呈加权线性分布,因此系统在进行螺距误差补偿时,除保证测量点上的补偿准确外,对于测量点之间的误差仍然进行加权补偿,从而保证在整个丝杆的全行程内,每个系统周期(约4ms)都对丝杆误差进行补偿,而不是孤立地只对测量点进行补偿。

在加权补偿的图形中可看出,丝杆长度范围任意一点的补偿量与邻近的测量点的补偿量是不同的,而任意一点补偿量的确定,除与当前点左右两侧量点的误差值有关外,还与邻近测量点前后的误差变化量有关。螺距补偿的实现条件见4.5.1。

3.2 PRGRM(程序) 主功能

按【程序】键后, 屏幕上显示程序管理主画面如图 3-1 所示:

图 3-1 程序管理

系统中最多可保存200个文件,最大内存640K,对每个程序名,系统显示以下信息:

3.2.1 程序名输入原则

在系统中,只有主程序能进行加工,主程序以P或N为第一个字母。子程序以N为第一个字母,子程序只能被主程序调用。主程序或子程序后跟二位数字表示不同的程序号,系统规定,主程序可以是P00~P99或N00~N99之间任何一个,子程序可以是N00~N99之间任何一个。

输入程序名时,首先输入 $P(\vec{u} N)$,然后按键 $0\sim9$ 输入二位数字,按回车键后若 P27# 参数=0,系统不自动生成程序段号,P27# 参数 $\neq0$ 时自动生成程序段号。段号增量为 P27# 参数,输入完毕,系统对输入的程序名进行处理.

3.2.2 程序编辑

程序管理画面上按【F5】键,屏幕上与 F5 对应的按钮被按下,同时光标在屏幕左下方"请输入文件名"后闪烁,用户可输入一个主程序名 P00~P99 或子程序名 N00~N99,按回车后进入编辑画面。编辑画面如图 3-2:

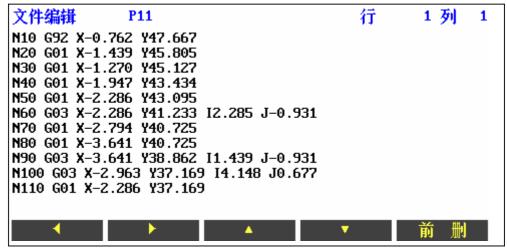


图 3-2 程序编辑

若该程序已存在系统中,则将该程序显示在屏幕上,若是新程序,屏幕上程序显示区中 无任何程序,屏幕中间空白处供用户编辑,系统最大可以编辑约 40K 的程序,如果程序为只 读属性,则不能进行修改。

第一行显示当前程序名,以及光标所在的行号和列号,底行为编辑功能键提示,此时 F 功能键成为编辑程序时的光标移动键。中间为程序显示区,用户可以在其中编辑程序。

字符数字键:每按一次字符或数字键,在光标位置上出现所按字符或数字,同时光标及其后的字符均后移一个字符位置,即在原光标位置上挤进一个字符(插入方式)。

编辑功能键:由F功能键和回车键【ENTER】组成。编辑功能键的作用是移动光标到合适位置,以便加进、删除一个(或一行)字符,它们并不直接在程序中添加字符。回车键的作用是使光标到达下一行的行首。若它处于程序中间某一行中,会在该行与下一行之间插入一个空行,同时将原来该行光标位置向后的所有字符带到空行中,产生新的一行。按【◀▶】键可切换光标功能键【F1】~【F5】键的功能。

例如:编辑下面两段程序:

N0010 G00 X100 N0020 G01 Z10

按键顺序为: N-0-0-1-0-G-0-0-X-1-0-0-ENTER

编辑时,以下键有效:

- F1: 光标左移一个字符,程序内容不产生任何变化。到行首按 F1 无效。
- F2: 光标右移一个字符,程序内容不产生任何变化。到行末按 F2 无效。
- F3: 光标上移一行,当光标到达屏幕的程序区第一行时,如果该行是程序的第一行,再按F3 无效。如果它不是程序的第一行,按F3,整个屏幕上的程序下滚一行。
- F4: 光标下移一行,当光标到达屏幕的程序区末行时,如果该行是程序的最后一行,再按 F4 无效。如果它不是程序的最后一行,则屏幕上的程序上滚一行。
- F5: 删除光标前的一个字符,同时该字符后面的所有的本行字符均前移一位,以填补空缺。当光标位于行首时按 F5 将使本行移到上一行的末尾。

按【◆】键后:

- F1: 将光标移至行首
- F2: 将光标移至行尾
- F3: 将光标移至文件首
- F4: 将光标移至文件尾
- 注意:严禁非正常退出编辑状态,否则系统中的部分程序甚至全部程序将被破坏,这些非正常退出包括:
 - (1)在编辑时按硬件复位、关机或电网瞬时掉电。
 - (2) 若编辑一个很大的程序,系统可能要等待一会才能进入编辑画面,在等待时发生上述行为,会破坏一部分或全部程序。

发生以上情况,本系统不能保证程序的完备性。

如需退出编辑状态,只需按某主功能键,系统便切换到其它主功能状态,在退出之前,系统自动将用户编辑的程序进行处理后保存,并将程序记录于目录,反映在程序名表中。

3.2.3 复制、删除和程序属性

在**程序管理**主功能下的这三个子功能,主要用于程序整体状态的改变。

3.2.3.1 复制文件

将某程序复制成另一程序。按【程序】主功能键进入程序管理,再按【F3】, "复制"按钮被按下,同时在屏幕左下方"请输入文件名"中出现光标,在光标处键入将被复制的程序名,如 P67 (P67 必须是已在系统中的程序),按回车键后系统提示: "将程序复制为",光标在其后闪烁,再输入复制的目标程序名,如 P68 (P68 必须是不在系统中的程序),按【ENTER】后复制完成,新的程序产生,同时程序名表中也发生相应的改变。

3.2.3.2 删除文件

本功能是将一个无用的程序从系统中删除掉,可以是主程序,也可以是子程序,只要它出现在程序名表中。步骤:

- 1. 按【程序】进入程序管理界面
- 2. 按【F2】, 屏幕下方与 F2 对应的按钮"删除"被按下,输入需要删除的程序名(全部删除时,输入"P..")。
- 3. 按【ENTER】键后该程序即被删除。

注意:程序一旦被删除后,将无法恢复,故删除时,务请仔细操作。

3.2.3.3 修改程序属性

数控系统的每一个程序可有两种属性,分别是:

a)读写 b) 只读

对于读写属性,可进行一般的编辑,删除等。对于只读属性,程序只能显示在屏幕上供 观看,而不能在其中增减字符。此功能可防止误操作破坏程序。

操作步骤:

- 1. 按【程序】进入程序管理界面
- 2. 按【◄►】
- 3. 按【F5】, 屏幕下方与 F5 对应的按钮"程序属性"被按下, 同时在光标处输入程序名。
- 4. 按【ENTER】键后,系统提示:"请选择新属性 0:读写、1:只读",表示该程序将被赋予属性。
- 5. 输入 0、1 两个数字之一,则该程序属性将被重新设定,同时在程序名表中也有变化, 这两个数字的含义:
 - 0: 普通属性 1: 只读属性
- 一个新程序编辑后,其属性缺省为 0(RW 读写属性)。

3.2.4 输入和输出功能

系统通过 RS-232 串行口输入、输出程序。

3.2.4.1 串口输入(F3)

可以经串行口从 PC 机或其他数控系统输入一个程序。操作:

- 1. 按【程序】进入程序管理
- 2. 按【◀►】
- 3. 按【F3】, 屏幕下方"串口输入"按钮被按下, 系统提示"请输入文件名"并在后面显示光标, 在光标处输入程序名(必须是系统中没有的程序), 按回车键后输入过程开始。
 - 4. 通讯传输时,在屏幕上可见到输入的字符依次显示。

3.2.4.2 串口输出(F2)

将已存储在系统中的某个程序输出给PC 机或其它数控系统。步骤:

- 1. 按【程序】进入程序管理界面
- 2. 按【◀▶】
- 3. 按【F2】,幕下方"串口输出"按钮被按下,系统提示"请输入文件名"并在后面显示光标,在光标处输入程序名(已存储于系统中),按回车键后输出开始。
 - 注: (1)程序名输入时, 若打错字符, 可用【F1】键修改。
 - (2)与计算机进行程序交换的具体操作请见通讯软件上的说明文件。

3.2.5 浏览

浏览功能能快速浏览 CNC 存储区中的用户程序内容,该功能可以打开任意大小的文件,进行查看,但不能进行修改。操作顺序如下:

- 1. 按【程序】进入程序管理界面
- 2. 按【F4】再输入文件名,系统打开相应文件,若直接回车,系统打开文件列表的第一个文件。屏幕第一行"文件浏览"后显示该程序名 (PXX 或 NXX),屏幕其他区域显示该程序的内容。此时,功能键 F1~F5 被重新定义。
 - F1:编辑。按【F1】可编辑当前显示的程序内容。
 - F2: 程序首。将光标移至文件夹。
 - F3: 程序尾。将光标移至文件尾。
- F4: 上一段程序。按【F5】显示 CNC 用户程序区的下一个程序名及内容。若当前程序为用户程序区的最后一个程序,按此键后显示第一个程序。
- F5: 下一段程序。按【F4】显示 CNC 用户程序区的上一个程序名及内容。若当前程序为用户程序区的第一个程序,按【F5】后,显示最后一个程序内容及名称。

3.3 U 盘管理

系统提供了 USB 接口,支持对 U 盘的访问。在 U 盘管理界面下可以实现 U 盘内容和用户程序存储器间的导入和导出。

3.3.1 U 盘管理说明

- 1. 支持采用 USB1.1/USB2.0 协议的 U 盘存储器, U 盘文件系统格式为 FAT 格式。
- 2. 可管理的最大 U 盘目录深度为 6 级。
- 3. U盘文件名显示格式为 8.3 格式,即 ××××××××××××× 格式,长于 8.3 格式的文件名以缩减为 8.3 的格式显示,支持中文目录名。
 - 4. 支持与用户程序存储器间文件相互存储。
 - 5. U盘文件名自动排序

3.3.2 如何进入 U 盘管理界面及界面介绍

- 1. 打开 U 盘防护盖,插入 U 盘;
- 2. 按【U盘】键, 进入U盘管理界面: 如图 3-3 所示:

(3)

图 3-3 U 盘管理

- (1) U 盘程序列表区:显示 U 盘当前目录下的文件列表
- (2) 用户程序列表区:显示用户程序存储器中的程序列表
- (3) U 盘路径显示区:显示 U 盘当前文件的路径,最大深度为 6 级
- (4) 状态栏: 错误操作信息和操作提示信息以及操作结果信息显示栏

U 盘管理界面下 F 功能键介绍:

存入U盘,将用户程序列表中的程序存入U盘当前目录

文件下页,用户程序列表每屏最多显示 18 个用户程序,当程序数目超过一屏时,可用循环翻页功能显示用户程序列表中当前未显示出的程序

存入系统,将选中的 U 盘文件存入用户程序存储器

按【◀▶】键之后:

浏览程序, 浏览用户程序列表中的程序

浏览U文件,浏览选中的U盘文件

删U盘文件,删除选中的U盘文件

U 盘文件列表的显示操作键介绍:

【上页】: 当前 U 盘文件目录列表向前显示一页

【下页】: 当前 U 盘文件目录列表向后显示一页

- 【▲】: 上移光标,光标在 U 盘文件列表区上移一行,当光标移至 U 盘文件列表区顶部,继续按【▲】键,当前文件列表内容整体下移一行,同时将目录列表中未显示的前一个文件显示在列表顶部。若当前光标位置上已是 U 盘文件列表的第一个文件或目录,则停止上移。
- 【▼】: 下移光标,光标在 U 盘列表区下移一行,当光标移至 U 盘文件列表区底部,继续按【▼】键,当前文件列表内容整体上移一行,同时将目录列表中未显示的下一个文件显示在列表底。若当前光标位置上已是 U 盘文件列表的最后一个文件或目录,则停止下移。

3.3.3 U 盘文件的选中

由于 U 盘中的文件名可能是中文名或长文件名,这给 U 盘文件名的输入带来了不便,为了便于用户对 U 盘文件进行操作,系统采用光标选中的方式来选择要操作的文件。系统规定:在对 U 盘文件进行任何操作前需要首先选中该文件。所谓选中,即移动 U 盘文件列表中的光标,将其置在所要操作的文件名上,即表示选中了该文件。文件夹的选中与此相同。如图 3.3 中所示当前选中的是 P20 文件。

3.3.4 如何打开 U 盘文件夹

系统支持的 U 盘目录深度为 6 级,在不超过目录深度下的文件夹均可打开。用户可以将加工程序分类存储到相应文件夹中,便于用户查找和管理程序。要打开某个文件夹,首先要选中该文件夹,然后按【ENTER】键,即打开该文件夹,同时在 U 盘文件列表中显示该文件夹中的内容。

假设 U 盘根目录下有一名为[加工程序]的文件夹,以打开该文件夹为例说明如何进行打 开文件夹的操作

- 1. 移动 U 盘光标, 选中[加工程序]文件夹;
- 2. 按【ENTER】键,该文件夹的内容即在 U 盘文件列表中显示。

3.3.5 如何返回上级目录

通过以下操作可以返回 U 盘当前文件的上级目录:

- 1. 选中[返回上级];
- 2. 按【ENTER】键,即可返回上级目录,若返回成功,U 盘路径显示区显示新的路径
- 3. 若当前目录已是 U 盘根目录,则不能再向上返回。

3.3.6 如何将 U 盘文件存入系统

该功能实现将 U 盘中的文件存入用户程序存储器。通过下面的例子来说明具体的操作流程,假设 U 盘根目录下已存在 test.nc 文件,要将其存入用户程序存储器,且在用户存储器中以 P03 命名。

- 1. 进入 U 盘管理界面(参照 3.3.2 操作),选中 test.nc 文件;
- 2. 按【F3】(存入系统)键,在提示栏显示"将程序复制为"输入框,输入 P03 后按【ENTER】键,即开始将 U 盘文件存入系统:
 - 3. 若操作成功, P03 文件会出现在用户程序列表中。
- 注: 1. 存入系统的文件名必须遵守用户程序命名规则,即以 P 或 N 开头,后跟两个数字。
- 2. 存入系统的 U 盘文件大小不能超过系统规定的用户程序最大值,约 40 Kbyte,车床系统没有 DNC 功能,文件过大则无法加工。
 - 3. 文件夹不能存入系统。

3.3.7 如何将用户程序存储器中的程序存入 U 盘

操作举例说明,假设用户程序目录列表中已存在 P03 程序,现将其存入 U 盘根目录,在 U 盘中命名为 P01。

- 1. 进入 U 盘管理界面 (参照 3.3.2 操作);
- 2. 在 U 盘管理界面下,按【F1】(存入 U 盘)键,在显示"请输入文件名"输入框,并有光标在输入框闪烁,输入 P03 后按【ENTER】键,在提示栏显示"将程序复制为"输入框,并有光标在输入框闪烁,输入 P01 后按【ENTER】键,即开始将用户程序存储器中的 P03 存入到 U 盘根目录的操作;
 - 3. 若操作成功, P01 会出现在经重新排序后 U 盘文件列表中。

3.3.8 如何浏览 U 盘文件

在 U 盘管理界面下可以直接浏览查看 U 盘文件内容,这样便于用户在对 U 盘文件进行存储或删除操作前确定文件是否正确。具体操作流程如下:

- 1. 进入 U 盘管理界面(参照 3.3.2 操作), 在 U 盘管理界面下,选中需要浏览的文件;
- 2. 按【◀▶】键,再按【F2】(浏览 U 文件)键,即切换至 U 盘文件浏览界面;

在文件浏览界面下可以进行如下按键操作: 【F1】(\triangle), 【F2】(∇), 【F3】(程序首), 【F4】(程序尾), 查看文件的内容。

- 3. 若要退出 U 盘文件浏览,可在按任一主功能键,退出浏览界面,切换至相应主功能界面;
- 4. 若要浏览下一个 U 盘文件,首先要退出 U 盘文件浏览界面(参见流程 3 操作)返回到 U 盘管理界面,在 U 盘管理界面下选中要浏览的文件,重复流程 2 的操作即可。

3.3.9 如何删除 U 盘文件

当 U 盘剩余空间不足时,可以通过删除 U 盘文件功能删除不用的 U 盘文件。操作流程如下:

- 1. 进入 U 盘管理界面(参照 3.3.2 操作),进入要删除的文件所在目录(参照 3.3.4 操作),选中要删除的 U 盘文件;
 - 2. 按【◀▶】键,再按【F3】(删除 U 文件)键,即可删除文件;
- 3. 若删除成功,被删除文件名从所在目录中消失,所在目录文件名列表重新排序显示, 且在状态栏有"删除成功"信息出现。

3.3.10 如何在 U 盘管理界面下浏览用户程序存储器中的程序

该功能便于用户在向 U 盘存储程序之前浏览查看当前程序是否正确。以浏览用户列表中的 P03 程序为例,具体操作如下:

- 1. 在 U 盘管理界面下按【◀▶】键,再按【F1】(浏览程序)键,弹出"请输入文件名"输入框,并有光标在后面闪烁;
- 2. 输入要浏览的文件名如 P03, 按【ENTER】键,即切换到文件浏览界面,并显示 P03 内容。

3.3.11 U 盘管理界面下循环浏览用户程序列表

当用户程序列表中的程序个数超过一屏(18 个)显示范围时,若要查看当前未列出的用户程序名,可通过此功能进行查看。具体操作如下:

1. 在 U 盘管理界面下按【F3】(文件下页)键,在程序列表框中显示下页的程序名,若翻到列表尾页,再次按【F3】(文件下页)键则显示第一页程序列表内容;

2. 在 U 盘管理界面下循环翻页功能只对用户程序列表有效。

3.4 OPERT (操作) 主功能

OPERT(操作)主功能提供对系统或机床的各种操作和控制,如自动循环、手动连续进给、进给参数选择、MDI方式等。该主功能下的各种子功能仍由功能键F1~F5选择。

在操作加工界面下,按【ALT】键(99TA/99TB 用【上页】键),可以在几个显示模式下相互切换,用户可以在 P120#系统参数中设置开机时该界面的显示. 按"0PERT(操作)"键进入加工主功能,显示画面如图 3-4 所示:

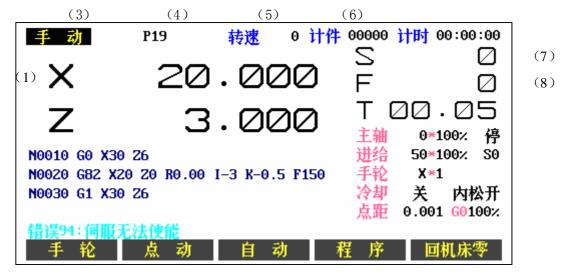


图 3-4 加工操作界面

操作加工界面相关说明:

- (1) X、Z(大字符显示的坐标值)则是相对于编程零点的坐标值,即工件坐标;
- (2) XP、ZP 为刀具相对于机床零点的坐标值,即机床坐标,在上图中没有显示,可 ALT 键切换显示模式,显示 XP、ZP。
- (3)操作模式:自动、手动、手轮、点动和回机床零,在屏幕左上角显示。上图中显示操作模式为:手动。
 - (4) 加工程序名: 自动加工使用的程序。
 - (5) 主轴实际转速。
 - (6) 计件, 计时: 动态显示加工工件的数量, 加工耗时。
 - (7) 编程主轴转速: 自动/MDI 时用户编入的主轴转速。
 - (8) 实际进给速度: 动态显示实际进给速度。

屏幕底行为 F 功能键的各种功能提示; 屏幕右侧显示各种状态分别指示机床状态、手动操作时的一些参数值, 如手动速度、主轴转速等。

3.4.1 自动循环(含任意段号处启动加工)

自动循环加工启动,对应机床的自动操作方式,按【F3】键后,在操作模式显示区显示"自动", 再按【打开/存储】键,屏幕第一行加工程序名显示区内出现光标并闪烁,用户可在此处输入准备运行的程序名,【F1】键用于修改程序名输入时按错的字符;屏幕中间的程序列表显示用户程序区中已有的程序名、程序大小、程序属性。

程序名输入无误并按【ENTER】键,说明系统已准备运行该程序,此后,如按【循环启动】键,该程序开始运行。如在循环启动前,按【F3】(起始段号)键,程序名后会出现光标,提示用户输入行号,输入行号后按循环启动,则系统从输入的行号开始执行。例如:输入

N0100,再按循环启动键,则系统找到以 N0100 为行号的第一个程序段开始执行,前面的程序段不执行;如没有则从第一行开始执行,并提示错误。

本系统规定,自动循环下的编程零点,就是系统大坐标显示值为零的点,一切编程轨迹 均以此坐标为基准。编程的坐标系与工件坐标系重合。

例如:编程为:

G90 G01 X10 Z30 F100

而循环开始时系统大坐标为:

X —50,000

Z 3. 500

那么执行上述程序的结果是: X 坐标沿正方向移动 60mm(直径量), Z 坐标沿正方向移动 26.5mm。

按下【循环启动】键后,系统首先对程序进行必要的检查、检错等内部处理,如有错,则出现错误提示,无错便开始顺序执行程序。

- 注意:(1)自动循环加工的程序名,由文件打开键调出。
 - (2) 在自动加工前,可以进入图形模拟或跟踪,具体见3.5节。

3.4.2 手动操作机床

手动操作包括手动连续进给和步进进给二种方式,又称手动、点动操作方式,冷却和主 轴均可手动操作。

1. 手动方式:按"手动"按钮对应的 F 键即进入手动方式,在手动方式下,【Z-】、【Z+】、【X-】、【X+】键表示各个坐标轴沿其正方向或负方向移动的操作键,按下其中之一,对应的坐标轴便沿相应的方向运动。其进给速度可按"FSET"手工设定。当由以上

四个进给键之一与"二十二"同时按下时,按 10#参数设定速度运行。

- 2. 点动方式: 与手动方式一样,按"点动"按钮对应的F键便可进入点动操作方式,每按一次坐标进给键,其坐标便沿该键对应的方向移动一个给定的长度,该长度由【Iset】设定。
 - 3. 手动操作参数的设定: 只在手动、点动方式时有效。
- 按【F】键:设定手动或点动方式的坐标移动速度(字母键区的【F】键),按【F】在"进给"二字后出现光标,此后可输人数字,表示每分钟进给的毫米数,按【ENTER】后有效。该速度的范围在 1~9999mm/min(0.001mm 脉冲当量时)之间,若输入有误,系统自动设定为50.000mm/min,按错数字,可用【F1】键修改。

按"Iset"键:设置点动步进进给量,只在点动方式有效,用于设置步进量。按【Iset】键,在光标后输入步进量(0.001~65.5mm)。

- 按【S】键:设置主轴转速,按【S】键后,在光标处输入数字表示主轴转速,按【ENTER】 后有效。系统输出该转速对应的模拟量。该转速由P3#参数、P4#参数限定上限。
 - 4. 主轴与冷却: 在手动、手轮、点动方式下, 主轴、冷却均可手工操作。
- 5. 夹紧/松开功能: 31XTA 有夹紧/松开方向选择功能,在三位开关置到主轴停、进给停档位时,按【内夹/外夹】键,屏幕显示的外圆紧/外圆松或内孔紧/内孔松将发生变换,M10和 M11 功能的方向也将产生变化。

3.4.3 返回机械零点

在"OPERT (操作)"功能下,按"回机床零"对应的F键,若底行的F键对应的按钮上没有,则按【◄►】键。操作方式成为返回机床零点方式,可看见在屏幕左上角出现"回

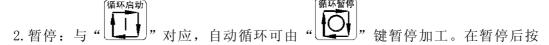
机床零",此时按手动进给键【Z-】、【Z+】、【X-】、【X+】键朝该轴正方向回零。有关机械零点的功能,详见第五章。

3.4.4 手轮(手摇脉冲发生器)

手轮可以控制机床在 X 方向或 Z 方向上的直线运动,为适应不同的需要,手轮设置了三个速度挡(倍率),分别为 X1、X10、X100,速度挡之间可随时切换,最小控制精度等同于系统控制精度,最大控制速度是脉冲当量的 100 倍。手轮主要用于机床的快速直线移动、对刀等。

手轮操作如下:

- 1. 在主菜单下按【加工】主功能键进入机床操作界面。
- 2. 按"手轮"对应的 F 键, 进入手轮操作方式, 如按钮上没有相应的按钮, 则先按【≺►】键, 使按钮出现"手轮"按钮。
- 3. 按【手脉轴选】键选择运动坐标轴,同时在屏幕的机床状态区"手轮"后显示已选择的坐标轴。
- 4. 按【手轮倍率】键选择手轮倍率,同时在屏幕的机床状态区"手轮"后显示已选择的 倍率。
 - 5. 摇动手轮,则机床做相应运动。
 - 6. 要退出手轮状态,可按自动,手动,点动或回机床零对应的 F 功能键。


循环启动

3.4.5 系统加工状态设置

在"操作加工"主功能的"自动"子功能下,有二种与机床—数控系统有关的状态设置。 1. 单段:按【F2】键来回切换。有效时,"单段"按钮被按下,系统每执行一个程序段,

便停下来等待用户输入,每按一次"上上上"键,系统向下执行一个程序段,若在等待时按

注: 自动加工开始后,不能进入轨迹显示功能。

3.4.6 MDI 操作方式

在"OPERT(操作)"主功能的手动、自动点动、手轮方式下,按字母 G、M、S、T,屏幕下方出现光标,此时可键入一行程序,按【ENTER】键后系统执行该行程序。该段程序不须输入段号。在自动方式下的可执行程序段均可在 MDI 方式下执行。

3.5 图形显示功能

在"OPERT(操作)"主功能下,按【F3】(自动)进入自动方式,此时按【F5】(图形显示)进入图形显示方式(联机或模拟)。该功能用于显示刀具在某加工程序控制下,刀尖的运行轨迹。该功能可以使用户直接观察到编程轨迹的运行过程,同时结合屏幕上显示的坐标值,能

直观地发现程序中的重大错误。屏幕上的图形可同步跟踪刀尖的切削运动,并显示棒料的外形,操作者可以从屏幕上直接观察到刀尖运动时,回转体的形成过程。模拟状态时,屏幕上显示刀具的中心轨迹,但机床各坐标轴并不运动,并且各种机床电器的控制功能也无效,它主要供用户调试程序,当程序无误时可以加工,避免由于编程疏忽引起的故障,甚至事故。

3.5.1 图形显示功能的画面进入顺序

- 1. 按【操作】键
- 2. 按【F3】(自动)键
- 3. 按【存储/打开】键
- 4. 输入文件名 "P××"
- 5. 按【ENTER】
- 6. 按【F5】(图形显示)

显示界面如下:



图 3-5 图形模拟

图形显示界面各按钮功能:

- 1. 慢速移动: 改变模拟刀具的移动速度,该按钮按下后,按钮变为快速移动。该按钮根据状态在慢速移动和快速移动之间切换。
- 2. 屏幕起点:将模拟刀具移动到起始位置。
- 3. 设定毛坯: 用于设置毛坯尺寸。按下此键,再移动光标,可设置或修改毛坯尺寸。在 L 后输入实际毛坯长度,在 D 后输入毛坯外径,在 d 后输入毛坯内径。
- 4. 模拟: 按F此键,使图形模拟时,实际刀具不运动。
- 5. 联机:按下此键,使图形模拟同时,实际刀具也运动。

按下【◀▶】键后,F 功能键上显示【◀】、【▶】、【▲】、【▼】键,用来移动模拟刀具。

3.5.2 图形模拟步骤

- 1. 在图形显示界面,按"设定毛坯"对应的F功能键。
- 2. 依次在 L 后输入毛坯长度,在 D 后输入毛坯外径,在 d 后毛坯内孔(如没有内孔则输入 0)
- 3. 在图形显示区右下方有一个竖线,竖线的上端在此代表刀具刀尖,用户必须移动竖线在屏幕上选择一个合适的位置,这个竖线所停的位置,应该是当前显示的工件坐标对应的位置。可用【F2】、【F3】、【F4】、【F5】移动竖线,移动方向是屏幕上与【F2】~【F5】

对应的箭头方向,而每按一次 F1 键,竖线的移动量可以在 1 个象素 / 10 个象素之间切换。如何选择移动量由 F1 决定,按【F1】键(慢速移动,快速移动),通过【F1】~【F5】可将竖线中心移至图形显示区的任意位置。

4.一旦竖线就位,按"【记》"键,程序便可开始执行。用竖线表示的刀具依照用户程序模拟运动。而机床是否运动。则取决于驱动电源是否接通及选择模拟或联机。程序执行完毕,可按其他主功能键退出图形轨迹显示。模拟结束,可以通过图形判断程序是否正确。如有错误,按【程序】主功能键,回到编辑状态修改程序,程序修改完毕,重新进行图形模拟,直至正确为止。模拟完毕,只能退出图形轨迹显示。

第四章 系统功能

4.1 参数体系

PARAM(参数)主功能为机床-数控系统的参数设置及状态显示。作为一个数控系统,为适应各种不同应用或不同的加工要求,有一些参数应由用户设置。在 PARAM(参数)主功能下,可提供的子功能仍由 F1~F5 键选择,进入"PARAM(参数)"画面如 4-1 所示:

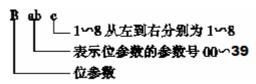

参数管理					V5.01-1.5
		当前文件	备份一	备份二	
	刀具参数	T01	TB1	TB2	
	系统参数	S01	SB1	SB2	
	位参数	B01	BB1	BB2	
	螺距补偿	I01	IB1	IB2	
	坐标偏置	C01	CB1	CB2	
777	k) /	S. MD. 35	A WE	s t ster	
刀具参	数 条统	梦数 位	.参数	诊 断	•
	F1	F2	F3	F4	F5

图 4-1 参数管理

根据其功能参数分为以下三类:

- 1. 检测类:测试外部输入口状态,主轴转速以及主轴编码器是否正常工作等。
- 2. 系统设置类: 系统初始化,设置口令,格式化电子盘等。
- 3. 参数体系:
- (1) 系统参数: P00#~P199#
- (2) 刀具参数: 24个刀具参数
- (3) 螺距误差补偿: 160点/轴
- (4) 位参数: 40个8位参数,共320个状态

说明: 系统参数共 200 个, 从 P00#~P199#, 从 P100#开始, 以 PA0#表示, P110#以 PB0#表示, 位参数共 40 个, 每个位参数共 8 位, 每一位用 Babc 表示, 其中:

例如: B124: 第12#位参数从左边数第4位: 定时润滑开放。

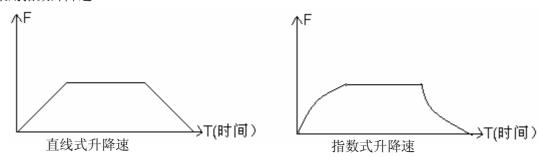
根据各种参数文件在电子盘中存放方式的不同,系统将参数文件分为三类:当前参数、备份一、备份二,它们的主要区别有:

- 1. 当前参数是数控系统正在使用的参数,它的文件名显示在程序管理界面下参数显示区。 它存放在用户程序存储区,电子盘格式化将会删除当前参数文件,而格式化不会影响到 参数文件的备份一和备份二。
- 2. 用户可以浏览和编辑当前参数,但备份参数只可以浏览。

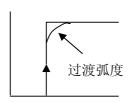
用户在浏览或编辑参数文件之前,应该确定"参数存储类型"选择的是当前参数或备份一、备份二中的参数文件,备份文件是不能被编辑的,在编辑备份文件时状态栏会提示"该文件为备份,不可进行编辑"。备份文件用来备份当前参数文件,如果需要编辑或使用某个

备份文件时,需要把它恢复为当前文件,然后才可以编辑和使用。

用户可以用光标键【F5】(▶)移动参数存储类型光标,来选择要打开的参数文件的存储类型。


4.2参数的基本概念

在介绍参数之前,首先介绍一些基本概念。


4.2.1 加减速时间常数

对于机床的坐标轴,其运行速度从零达到所设定的最大速度时所耗用的时间,或从所设定的最大速度到停止时所耗用的时间。

系统在 G00 快速定位螺纹切削及手动进给时采用直线升降速, 在切削加工时及手脉进给时采用指数升降速.

采用指数式升降速在切削的程序段间会有过渡弧度(见图)该弧度与进给速度和指数升降速时间常数有关(39#),减小 39#有助于减小该弧度,如果两段轨迹之间不产生过渡弧度,可采用快速清角指令 G61, G62 解决(详见 G61, G62 说明)

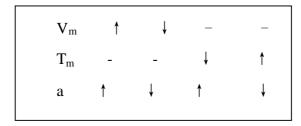
4.2.2 直线式升降速

数控系统用采样控制法,每隔 4.096 毫秒对各坐标轴实现一次采样控制,各轴加减速采用匀加速控制方法,即每个采样间隔 (4.096ms) 电机速度 (如果运动的话)的变化是恒定值,它就是系统的加(减)速度。其计算公式为:

$$\mathbf{a} = \frac{\mathbf{V_m} \times \mathbf{Ts^2}}{60 \times T_m} \tag{\vec{\mathbf{x}} 4-1}$$

其中: Ts: 系统采样时间(4.096ms)

Tm: 加减速时间常数(ms)


Vm: 最大速度(mm/min)

a: 加速度

可通过改变最大速度或改变加减速时间常数实现改变加速度的目的。

最大速度一般用来限定在该运动状态的最大速度,并且与加减速时间常数一起确定加速度值,而系统的实际运行速度应小于或等于最大速度。

加速度 a 与最大速度 Vm 及时间常数 Tm 的关系:

"一"表示不变,而当 Tm 与 Vm 同时变化时,则由公式具体确定。

4.2.3 电子齿轮比

调节系统的输出,使得系统的坐标运行值与工作台运动的距离保持一致,而不需刻意为此调节电机与丝杆的传动比。

电子齿轮由系统参数设定,每轴二个参数称为倍率 MLT 与分率 DVT,对于滚珠丝杆传动工作台运动时:

$$\frac{MLT}{DVT} = \frac{Pmt \times Gf}{Pcn \times Gd}$$

(式 4-2)

其中: Pmt: 电机每转脉冲数, 其中步进电机: 每转系统输出的脉冲数脉冲 伺服电机: 编码器线数 X 编码器倍频数

Pcn: 丝杆螺距 μm

Gf: 电机与丝杆连接传动中从动轮齿数总数

Gd: 电机与丝杆连接传动中主动轮齿数总数

对于直连情况, Gf=Gd=1

MLT 与 DVT 必须取其最小正整数的公约数。

MLT 与 DVT 的取值范围为 0~65535, 但比值必须在 0.01~100 之间, 其中 DVT 不得为零.

4.2.4 参数密码

为防止参数被无意修改,系统设置了密码。首先必须输入密码解锁,然后才能修改参数, 方法如下:

- 1. 按【密码】键,在"请输入密码"后显示光标。
- 2. 输入密码。该密码与"初始化"功能中的口令一致。
- 3. 按【ENTER】键,输入正确,系统清除该行,否则,显示错误。

4.3 系统参数

要修改系统参数, 先须按 4.2.4 输入正确的密码, 然后:

- 1. 按主功能键【参数】进入参数画面;
- 2. 按【F2】(系统参数)进入系统参数界面,输入密码:
- 3. 按【F2】~【F5】键移动光标到相应的参数上;
- 4. 按数字键可直接进行重新输入;
- 5. 按回车键【ENTER】输入有效;

6. 按"打弄程序" 键将参数存入电子盘: 注: 具体定义见附录二

4.4 位参数

对于很多只有二种选择性的功能,可用位参数设定,每个参数有8位,每位只有0或1二种状态,可作为某一功能的有效或无效选择,系统共有40个位参数,最多可实现320种状态的有效与否。

4.4.1 讲入

按键次序【参数】主功能键→【F3】(位参数)"

位参数从 0#到 39#,每个位参数有 8 位,从左到右分别叫第一位,第二位,……第八位,为方便起见,每个位参数的某一位用 Babc 表示,例如 B134表示第 13 号位参数的第四位。

注: 具体定义见附录三

4.5 螺距误差补偿

系统每轴最多可输入 160 个误差补偿点,每轴的补偿点数及两个点之间的间隔由系统参数的 P52#~P57#决定,超出补偿范围的点系统认为螺距误差为 0,在两个补偿点之间系统认为螺距误差是线性变化。

- 1. 按主功能键【参数】→再按【◀►】→再按【F3】(螺距补偿),进入螺距补偿界面。
- 2. 按【F1】键可选择 X、Y、Z、A 各轴。
- 3. 按【◀▶】键可显示◀▶▲▼按钮,用来移动光标。
- 4. 按【F2】~【F5】移动光标可选择某个点的误差值.

4.5.1 螺距误差补偿须注意的问题

- 1. 必须输入密码后才能修改。
- 2. 输入值为补偿值,即为抵消该误差而须输入的补偿值。
- 3. 各轴螺距误差是否进行补偿由参数的 B016 ∽ B018 决定。
- 4. 动态补偿情况可将 B011 位设为 1, 在操作界面上动态显示各轴运行过程中的补偿值。
- 5. 系统必须先回机床零点,才能进行螺距补偿。
- 6. 回机床零点后,右上角小坐标显示为: XP00000.000 ZP00000.000,要进行补偿, 必须使 XP、ZP 坐标朝负向运动。
- 7. 根据 X 向、Z 向丝杆长度、丝杠精度、加工工件尺寸确定 X 向、Z 向螺距误差补偿间隔长度及补偿点数。每轴最多补偿 160 点 (52、53、56、57 参数)。
- 8. 用激光干涉仪测出 X、Z 两个方向从机床零点开始沿负向每隔一定距离(P52#、P56# 参数)的误差。
 - 9. 将测出的误差输入到参数表的螺距误差项中。
 - 10. 将位参数 03#设为: XXXXX101(开放回参考点功能, X 号表示该位无关)

4.5.2 螺距误差补偿设置举例

例: X 丝杠有效长度为 300mm, 共补偿 100 点, P52#参数=300 / 100=3, P53#参数=100 (≤150)

用激光干涉测出螺距误差: (先回零点, 使 XP=0)

沿—X 向走到-3mm 处(系统显示), 实测走到-2.974, 1#螺距误差为-0.006

沿一X 向走到-6mm 处(系统显示), 实测走到-6.003, 2#螺距误差为+0.003

沿-X 向走到-9mm 处(系统显示), 实测走到-9.007, 3#螺距误差为+0.007


沿—X 向走到-12mm 处(系统显示), 实测走到-11.990, 4#螺距误差为-0.010

沿一X向走到-15mm 处(系统显示), 实测走到-14.998,5#螺距误差为-0.002 沿一X向走到-18mm 处(系统显示), 实测走到-17.991,6#螺距误差为-0.009 沿一X向走到-21mm 处(系统显示), 实测走到-21.001,7#螺距误差为+0.001 沿一X向走到-24mm 处(系统显示), 实测走到-24.002,8#螺距误差为+0.002 沿一X向走到-291mm 处(系统显示), 实测走到-27.009,9#螺距误差为+0.009 沿一X向走到-291mm 处(系统显示), 实测走到-291.011,97#螺距误差为+0.011 沿一X向走到-294mm 处(系统显示), 实测走到-294.000,98#螺距误差为 0 沿一X向走到-297mm 处(系统显示), 实测走到-296.999,99#螺距误差为-0.001 沿一X向走到-300mm 处(系统显示), 实测走到-300.007,100#螺距误差为+0.007 最后存盘,CNC系统将在加工时自动进行螺距补偿。

4.5.3 螺距误差补偿 U 盘导入

用激光干涉仪等工具测出的螺距误差数据一般可以输出到电脑,然后按照系统要求的格式处理后可以用 U 盘导入到系统。用仪器得到的误差数据大多是以微米为单位的整数,同时根据方便的原则,要求如下:

1. 螺距误差数据文件用 Windows 记事本产生,每轴螺距误差数据的文件名不同,分别为: X 轴为"I01X. TXT", Y 轴为"I01Y. TXT", Z 轴为"I01Z. TXT", A 轴为"I01A. TXT"; 螺距误差数据文件内容如下图:

- 2. 在螺距误差数据文件中每行数据对应系统的螺距补偿参数中的一个参数,依次递增,每行的数据是一个可带符号的整数;如图上中-21,导入到系统后对应的1号参数为-0.021操作步骤:
 - 1. 在螺距补偿界面下,按【F1】将页面切换到需要导入的页面如 Y轴;
 - 2. 将处理完的数据文件,按命名规则命名,然后复制到 U 盘根目录;
 - 3. 按 "U 盘导入"对应的 F 功能键(如没有,则需按【◀▶】进行 F 功能切换)。

4.6 刀具参数

每把刀的刀具参数有四项,分别是 XZ 向的刀补值,刀尖圆弧半径,刀尖向对于工件的相位编号($1\sim9$)。

关于刀具参数在编程中的作用请见 2.4.3。

刀补操作:

- (1) 按【F1】键,进入刀具参数设置画面,此时,光标在"T01"刀号的参数处闪烁。
- (2) 此时 F 功能键被重新定义,可按【F4】或【F5】键将光标移到需要设置的刀号处。
- (3) 若要输入 X 向值,按【F1】(对刀)后再直接输入试切的工件直径,按【ENTER】后

产生刀补。

(4) 若要输入 Z 向值,先按【ENTER】键,再按【F1】(对刀)键,然后输入试切的工件长度,按【ENTER】后产生刀补。

(5) 按"打开程序" 键将输入或修改的参数存盘。

4.7 初始化

在初始化界面下主要实现了以下功能:清内存、格式化、修改密码、恢复参数出厂值、 参数文件的备份和恢复、时间设置和序列号等。

初始化界面的进入步骤:

- 1. 按主功能键【参数】,进入参数界面;
- 2. 按【◀▶】键,再按【F1】(初始化)进入初始化界面。

4.7.1 清内存

如果受外部干扰造成系统紊乱、显示紊乱、数据混乱等系统运行中出现的不正常情况,应使用清内存操作。它将所有存储单元全部置为 0,包含掉电保护区的运行参数,及程序名表等。因此用户应慎重执行该功能,以防重要参数和程序丢失。

清内存的操作步骤:

- 1. 进入初始化界面,再按【F1】(清内存),进入清内存界面;
- 2. 输入正确的密码, 按【ENTER】;
- 3. 系统自动重新启动。

4.7.2 格式化

当出现用户程序错误、文件或文件目录紊乱、参数文件无法保存时,需要对电子盘进行格式化操作。格式化操作将会删除系统内的所有用户程序和所有除备份参数之外的参数(不会影响到时间和密码),用户应慎重执行该功能,以防重要程序和当前参数文件的丢失。若格式化之前,需要保存当前参数文件可参见参数备份操作。

格式化的操作步骤:

- 1. 进入初始化界面,再按【F2】(格式化),进入格式化界面;
- 2. 输入正确的密码,按【ENTER】;
- 3. 系统开始执行格式化操作。

4.7.3 修改密码

系统添加密码主要是为了防止误操作破坏一些重要参数文件,而使得系统无法正常运行。出厂时系统密码为"**XZ0012**",用户可以在系统修改密码界面下修改密码。

修改密码的步骤:

- 1. 进入初始化界面,再按【F3】(修改密码),进入修改密码界面;
- 2. 在"原密码"输入框中输入正确的密码:
- 3. 在"新密码"和"确认密码"输入框中输入新的密码,这两次输入的密码要一致;
- 4. 输入完成后按【F4】(确定)(或当光标在确认密码输入框中是,也可按【ENTER】)保存新密码。
 - 5. 密码修改成功时系统会在状态栏中提示"密码修改完成,请记住新密码",如果提示

"密码错误",那么请在原密码输入框中输入正确的密,否则密码将无法修改成功,如果提示"输入的新密码不一致,请重新输入",表示在"新密码"和"确认密码"中输入的两个密码不相同,请确认后重新输入;

4.7.4 出厂值

出厂值界面主要完成以下功能:恢复参数的出厂值、备份参数到备份数据区、从备份数据区恢复参数,U盘导入,U盘导出等功能;

出厂值界面的进入:

- 1. 按主功能键【参数】,进入参数界面;
- 2. 按【F4】(初始化)进入初始化界面;
- 3. 按【F4】(出厂值)进入出厂值界面。

4.7.4.1 如何恢复参数的出厂值

恢复参数的出厂值功能就是将指定的参数的系统当前使用的参数恢复成出厂设置的参数,该功能主要在数控系统参数混乱而使系统无法正常工作时使用,参数的出厂值可以保证系统的正常运行但不一定能符合用户的具体需要,因此用户应慎重执行该功能。为了防止误操作需要在操作之前先输入密码。

恢复出厂值的步骤:

- 1. 进入出厂值界面;
- 2. 按【密码】键,输入正确的密码,再按【ENTER】:
- 3. 用光标键【▶】和【ENTER】将大光标移至"当前参数"所在的列,以及需要恢复出厂值的参数所在的行:
 - 4. 按【F1】(出厂值),系统开始执行出厂值操作。

4.7.4.2 如何备份参数

备份参数的主要作用就是保护参数防止数据丢失,参数备份文件不受电子盘格式化的影响,因此建议用户将符合自己操作要求的参数在数控系统中作个备份,可以在参数出错时随时恢复。数控系统为每种参数提供"备份一"和"备份二"两个存储空间。

备份参数的步骤:

- 1. 进入出厂值界面,
- 2. 按【密码】键,输入正确的密码,再按【ENTER】;
- 3. 用光标键【▶】和【ENTER】键将大光标移至"备份一"或"备份二"所在的列,以及将要备份的参数所在的行:
 - 4. 按【F2】(备份),系统开始执行备份操作。

4.7.4.3 如何将备份参数文件恢复成当前参数文件

恢复参数就是将用户以前备份的数据恢复为当前参数,供数控系统使用,因此如果用户以前没有作过备份,此操作将是没有意义的。恢复参数操作将会覆盖系统正在使用的参数,如果该参数没有备份,覆盖系统将无法恢复这个参数,因此用户应慎重执行该功能。建议用户在恢复参数之前,先浏览将要用于恢复为当前参数的备份数据。

恢复参数的步骤:

- 1. 进入出厂值界面;
- 2. 按【密码】键,输入正确的密码,再按【ENTER】;
- 3. 用光标键【▶】和【ENTER】键将大光标移至"备份一"或"备份二"所在的列,以及将要恢复的参数所在的行:
 - 4. 按【F3】(恢复),系统开始执行恢复操作。

4.7.4.4 如何把当前参数导出到 U 盘

数控系统的当前参数是以文件的形式存放在电子盘中,包括一下几个文件:刀具参数、

系统参数、位参数、螺距补偿和坐标偏置,文件名分别是 T01、S01、B01、I01 和 C01。导出参数是将数控系统中的被选择的当前参数导出到 U 盘根目录,文件名是它在数控系统中的文件名,"导出文件"操作只能对当前参数使用。用户可以将一套满足需要的参数导出到 U 盘,然后保存到计算机,在系统参数混乱时用来恢复。

导出文件的步骤:

- 1. 进入出厂值界面;
- 2. 按【◀▶】键切换 F 功能键功能;
- 3. 按【密码】键,输入正确的密码,再按【ENTER】;
- 4. 用光标键【▶】和【ENTER】将大光标移至"当前参数"所在的列,以及要导出的 参数文件所在的行:
- 5. 按【F2】(U 盘导出),操作成功后相应的参数文件将被复制到 U 盘的根目录,操作失败将会提示出现的错误。

4.7.4.5 如何从 U 盘中导入参数文件

U 盘导入参数文件操作先从 U 盘根目录下查找与大光标处文件名相同的文件,找到后再用 U 盘中的该文件替换相应的当前参数。只能对当前参数进行"导入文件"操作,不能对数控系统的备份一和备份二进行该操作。用户应该保证要导入的参数是正确的,否则可能导致数控系统的参数混乱。在使用这些导入的参数进行加工之前,请确认参数是否正确,否则可能造成刀具、机床、工件损坏及人员受伤。

导入文件的步骤:

- 1. 进入出厂值界面;
- 2. 按【◀▶】键切换 F 功能键功能;
- 3. 按【密码】键,输入正确的密码,再按【ENTER】;
- 4. 用光标键【▶】和【ENTER】将大光标移至"当前参数"所在的列,以及要导入的 参数文件所在的行:
- 5. 按【F4】(U 盘导入),操作成功后相应的 U 盘根目录文件将被复制到系统,作为当前参数使用,操作失败将会提示出现的错误。

4.7.5 时间设置

在时间设置界面下,用户可以查看和设置当前的日期和时间,这部分数据不受格式化的 影响,但如果系统是试用版可能无法修改当前时间,而只能浏览。

时间设置的方法和步骤:

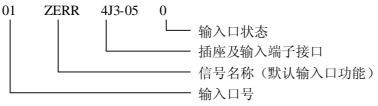
- 1. 进入初始化界面,按【F5】(时间设置),进入时间设置界面;
- 2. 移动大光标到需要设置的位置,按数字键直接输入,请确认输入的数据是否正确, 否则无法修改成功;
 - 3. 修改完成后, 按【存储】键, 保存修改的数据

4.8 坐标修调

因为各种原因造成刀架或车床的拖板产生微量位移使得刀尖的工件坐标产生误差,此时使用坐标修调用功能可一修正这一误差。

进入"PARAM(参数)"主功能后,按【◄►】键,再按【F4】(偏置)键,出现坐标修调界面。在 X、Z 后输入要偏置的值即可。

4.9 诊断

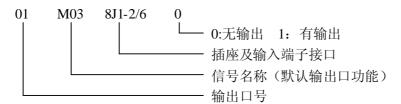

诊断界面提供输入口、输出口、编码器、手轮以及主轴转速的检测和监视功能,此功能 在机床调试以及错误判断时,很有用处。按【参数】主功能键进入参数界面,再按【F4】 (诊断)可进入诊断界面。

4.9.1 输入口

在诊断界面按【F2】(输入口)进入输入口界面:

每行显示3组信息,每组信号包含以下信息(以第一组为例)

输入口号和输入端子接口是一一对应的。输入口状态对应的是输入端子接口的输入状态,和位参数 B04, B05, B06, B07, B28 定义的有效电平没有关系。


有些功能的输入口是可以设置的,例如: X 轴参考点粗定位信号,输入口号在参数 P66 中定义,那么用户可以根据需要自行设置。假设需要将 5J1-12 设置为 X 轴参考点粗定位输入口,则从诊断界面下找到 5J1-12 对应的输入口为 19,将参数 P66 设置为 19 即可。

4.9.2 输出口

在诊断界面按【F3】(输出口)进入输出口界面:

每行显示3组信息,每组信号包含一下信息(以第一组为例)

输出口状态是系统往相应输出端子的输出状态,测试时可通过 M20KXX,M21KXX 来输出信号并通过对相应端子的测量,检查输出口是否正常。

对于某些可设置的输出口的功能,输出口的设置方法和输入口设置方法相同。

4.9.3 主轴转速和主轴编码器

该界面主要检查主轴编码器是否正常以及测试主轴旋转速度是否稳定。当主轴旋转时进入该功能,数控系统显示检测到的主轴转速和每一转内的编码器发出的脉冲数×4,正常1200线的编码器为4800,可有3-5个脉冲的偏差,但一次多了必然在相邻的上/下次减少,无积累误差。开始1-3次显示的数据可能不准是正常的。

4.9.4 手脉编码器

手脉编码器显示框中显示摇动手脉时系统读到的手脉编码器的反馈数据,用来测试手脉编码器或编码器接口是否正常。

4.9.5 报警定义

在诊断界面下,按【F1】(报警定义),进入报警定义界面。报警定义功能提供了自定义报警功能,用户可以最多定义 5 个自定义报警,错误提示为 X1~X5,以区别于通常报警。自定义报警可以在系统接收到输入口信号后在系统显示,并根据参数报警定义参数决定是否停止加工。

4.9.5.1 设置步骤:

(1) 编辑自定义报警内容文件

报警文件前 5 行分别对应 1~5 号自定义报警的报警内容,每个自定义报警系统最多显示 15 个汉字,如下图:

图 4-2 使用记事本编写自定义报警内容

编辑完成后,保存文件,文件名为"e01.txt",并将该文件复制到 U 盘根目录。

(2) 将报警文件导入到系统

按参数进入参数界面,在按 F1(报警定义)进入自定义报警界面,按 F1(导入文件),将报警文件(e01.txt)导入到系统。

(3) 设置相关参数

在自定义报警界面下,除报警内容外,参数还有报警、解除、停止和输出。 作用分别是:

报警:报警输入口号,当相应的输入口输入一个有效电平时,系统产生一个相应的自定

义报警,等于0时,不产生此自定义报警。

解除:解除该自定义报警输入口,当解除报警输入口输入一个有效电平时,该自定义报警被解除,等于 0 时,用户要用 CAN 键来解除报警。

停止: 是否停止自动加工, 等于0时, 不停止加工。

输出:产生自定义报警时向外输出信号的输出口,等于0时不往外输出信号。

参数 P119 为自定义报警的个数,最大值为 5,为 0 时,则关闭自定义报警功能。参数 B04, B05, B06, B07, B28 可以设置输入口的有效电平。

4.9.5.2 使用举例

将 1 号自定义报警设置为"报警 1",并让 5J1-12 端子输入低电平时产生 1 号自定义报警,并停止加工,当 5J1-10 端子同时输入低电平时,系统清除此自定义报警。

- (1) 编辑自定义报警内容文件,产生的"e01.txt"文件,并保存到 U 盘根目录,然后导入报警内容:
- (2) 在诊断表中查得 5J1-12 输入口为 19,5J1-10 输入口为 23。先将大光标移至序号为 01 的所在的行,在"报警"栏输入 19,在"解除"栏中输入 23,在"停止"栏中输入,在"输出"栏中输入;
 - (3) 将参数 P119 号设置为 1,参数 B066 设置 0,B062 设置为 0。

4.9.6 报警列表

在诊断界面,按 F4(报警列表)进入报警列表界面,可以显示当前系统的错误,报警列表是按照错误产生时的时间先后顺序排列的,最多可以同时显示 10 个错误。

第五章 系统重要功能详述

5.1 如何提高加工效率

提高加工效率的方法主要有两种:

- (1)缩短或取消程序段之间的升降速过程
- (2)在坐标轴运动中同时进行换刀及启停主轴等过程.
- 5.1.1 除非工艺需要工件的两段轨迹之间为尖角, 否则尽量不要使用 G61, G62 指令. 如加工的时间常数为 100ms 时, 每条加工程序将节省 0.6~0.8

5.1.2 并行执行 S、T 等指令

系统提供三种并行的外部指令:

- (1) 电动刀架换刀
- (2) 主轴启停
- (3) 主轴夹紧松开

打开20#位参数(置1)的对应位后实现

例:(位参数 B207 并行主轴启停, B208 并行换刀均置 1)

N10 M03 S1000 T2

N20 G0 X150 Z450

N30 G01 X50 Z120 F1200 M25

N40 Z20

N50 G0 X100

N60 T1

N70 G0X150 Z450

说明: N10 M03 S1000 T2 执行后, 系统启动执行设定的 M03 S1000 与 T2 的换刀动作. 接着(约0.008 秒后), 系统执行 G0 X150 Z450 的退刀动作, 在运行到 X150 Z450 的过程中, 系统启动主轴与换刀. 此处一般可节约 3~6 秒的时间.

在 N30 的 M25 指令,系统确认换刀到位后,再执行 N30 中的 G01 X50 Z120 F1200,否则等待直到换刀结束.以防接近工件时撞刀,如有把握,在执行 N30 时不会发生撞刀,M25 指令可不用.

5.1.3 手脉接法(系统除支持与老 31XT、99T 系统兼容 6J1 手脉接口,还支持标准的外接手脉(6J2)接口)。

系统支持二种外接手摇脉冲发生器。

1. 独立的手脉 2. 独立手脉及倍率和轴选

手脉的形式由位参数 B121, B122 及 P115#系统参数决定

1. 独立的手脉,由系统键盘选择进给轴和进给倍率:

B121=0 B122=0 P115#=0

2. 独立的手脉和轴选及倍率:

B121=1 B122=0 P115#=3

手脉信号, 倍率和轴选由 6J2 接入, 具体接线方式见第六章系统连接中手脉一节.

5.2 加工中修改刀补值

在加工中如发现工件尺寸因刀具磨损等原因造成尺寸变化,可及时修改以进行调整,减少工件的报废:

- (1) 执行暂停或单段.
- (2) 手动停主轴(或用三位开关)
- (3)测量工件尺寸.
- (4)进入刀补个修调界面,根据尺寸变化方向修改刀补值.

说明:

- (1) 当前执行的程序段系统不进行补偿, 而是到下一段后才补偿.
- (2)修改的刀补可以是当前刀,也可以是其他刀.
- (3)对于加工中修改的刀补值,系统即时修改刀补值,并以F500的速度重新调整刀尖位置,与真实尺寸吻合.
- (4)注意错误的修改值可能导致撞刀.

5.3 主轴控制

5.3.1 主轴模拟量输出控制

1. 系统模拟量输出可选 0~5V 或 0~10V

B113=0: $0 \sim 10V$ B113=1: $0 \sim 5V$

主轴转速用S功能实现,S0~S5000

S0 为主轴停。S1~S4 为控制主轴多速电机的继电器输出,S5 保留。

S6~S5000 (根据 P3# P4#确定主轴的最大转速) 为 255 档模拟量输出.

2、主轴恒线速输出

G96: 设定恒线速功能有效

G97: 取消恒线速功能

G96 必须与 S 功能联合使用, G96 发生时,以 G96 时刻的主轴转速与当前的 X 坐标共同 计算当时的线速度,以后 X 坐标变化时,主轴模拟量输出随之变化以保持恒线速切削,恒线 速的主轴转速上下限由 P26#, P28#限定

G96 编程时, X 轴的工件坐标必须不为零, 否则会因为计算出的线速度为零而出现 53 #报警。

3、主轴模拟量的输出定标

当主轴采取机械有级变档结合变频控制时(如主轴采用双速电机或采用机械变档),系统有如下方法自动或手动控制模拟量输出,以达到主轴转速与编程速度一致。

(1) 外部变低速信号输入: H/L

当 B081=0 时,系统检测主轴高低速 H/L 信号的电平决定主轴转速(外部高低速输入信号 H/L 的输入号由 P76#决定),当 P76#定义的输入号的输入无效(高电平),主轴最高速由 P3#确定,S 的编程等于 P3#时,主轴模拟量输出最大。当 P76#定义的输入有效(低电平),则由 P4#决定模拟量输出最大电压的主轴转速。B081=1 时,系统不检测 H/L 信号,而是根据记忆的 S1~S4 的状态决定采用哪个参数作为与模拟量输出最大时的主轴转速。

由程序定义的S1-S4 决定模拟量输出最大时对应的主轴最大转速

	S1	S2	S3	S4
各级转速上限	P3#	P4#	P77#	P78#
	M41	M42	M43	M44

也可以用 M41~M44 指定对应的参数作为最大模拟量的转速(见上表)。

当 B081=0 时两档选择是自动选择,但用户必须用外部开关量信号给系统。当 B081=1 时有四档可选,用户必须在程序中用 S1~S4(或 M41~M44)指定与主轴转速的参数号,以 保证编程的主轴转速与真实的转速一致。

5.3.2 主轴的 M 功能控制

由 M03、M04、M05、S 功能组成,通过 P 参数与位参数的不同选项可以实现各种控制要 求。

1. M 功能的不同选项配合

B012: =0: M03、M04 为常态保持输出,由 S0 或 M05 停止。

B012: =1: M03、M04 为脉冲输出, 由 P13#决定脉冲宽度

M05 只能是脉冲输出,脉冲宽度由 P14#决定。

MO3、MO4之间直接切换时,如需延时由P11#决定。

如需主轴快速能耗制动, 其继电器输出延时由 P12#决定, P12#定义的制动动作发生在 关断 MO3, MO4 之后。

以上参数均可置为0使该功能无效

2、主轴与 M 功能的关联

为方便编程操作,系统定义主轴控制的诸多关联选项

- (1) B131: 决定 S 功能是否自动执行 M03 (=0 执行,=1 不执行)
- (2) $S1 \sim S4$:

B102: =0: 允许使用 S1~S4 =1: 不允许使用 S1~S4

B132: =0: S4 无效,

=1: S4 有效

B133: =0: S4 由 M78 输出。

=1: S4 由 M79 输出。(B132=1 时)

B134: =0: M05 是关模拟量

=1: M05 是不关模拟量

注意: MO2 指令将强制关闭模拟量及冷却液(即强制执行 MO5、MO9, 而不管 B134), 如程序结束后不希望主轴停转,请不要在程序尾使用 MO2 指令。

5.3.3 主轴夹紧卡盘(液压卡盘)控制

- 1. 液压卡盘控制方式有以下几种:
- (1) 程序指令控制 M10 主轴夹紧, M11 主轴松开。
- (2) 外部脚踏开关: 分单联开关、双联开关及双向旋钮控制。
- (3) 键盘按钮控制:夹紧,松开。
- 2. 控制模式有关的参数选项

继电器输出口号,控制夹紧液压电磁阀的继电器。 P95#:

继电器输出口号,控制松开液压电磁阀的继电器。 P96#:

定义外部输入口号, 启动夹紧动作。 P97#:

定义外部输入口号, 启动松开动作。 P98#:

P105#: 控制液压夹紧电磁阀的通电时间以防止液压油缸长期通电造成损坏。

P106#: 控制液压松开电磁阀的通电时间以防止液压油缸长期通电造成损坏。 P105# =0 或 P106# =0 时为油缸长期通电方式。

P107#: 主轴夹紧到位输入口号, P107#=0 时不检测夹紧到位。

B181: =0: 主轴转动时不允许启动夹紧/松开功能。=1: 主轴转动时允许夹紧/松开。

B182: =0: 单联脚踏开关接通时主轴夹紧, 脱开时主轴松开。

=1: 单联脚踏开关踩下一次接通时主轴夹紧,另一次接通时主轴松开。

B184: =0: 采用单联脚踏开关,一个触点。

=1: 采用双联脚踏开关,两副触点,一个触点踩下主轴夹紧(短信号)。 另一副触点踩下是主轴松开(短信号)。

当采用两位旋钮(一副常开触点)控制时,B182=0,B183=0。

5.3.4 主轴启动状态检测功能

系统设定了两种输入判断, 检测主轴启动后主轴是否确定已启动

- 1. B141=0: 由外部 I/0 口(P94#参数定义) 检测是否输入有效决定主轴是否已启动。
- 2. B141=1: 检测到主轴转速大于 50RPM 时系统认为主轴已启动
- 3. B144=0:系统每次启动主轴时不检查主轴启动就绪信号;=1:检查主轴启动就绪。

当检查主轴是否启动时,系统在由 P11#决定的时间内循环扫描 P94#定义的输入口,检查到信号有效为正常,否则报警。

对于 B141=0, B144=1, 将主轴变频器的就绪输出的常开触点作为主轴就绪信号输入,可避免开机后变频器的开机延时造成系统未能正常启动主轴的故障。

5.3.5 主轴的位置/速度模式

对于某些专用车床,主轴采用主轴伺服电机,除可以进行切削加工外,还可对主轴作为转轴进行位置控制,使主轴伺服工作于速度模式(回转体切削)与位置模式(主轴与 X, Z 轴插补),系统的 Y 轴可以控制主轴工作于这两种模式。步骤如下:

- 1. 将系统 Y 轴的脉冲输出接到主轴伺服的脉冲进给接口
- 2. 将主轴模拟量输出接到主轴伺服的模拟量接口, 并订购±10V 模拟量输出的系统。
- 3. 将 Y 轴的 YTRF 信号接到主轴伺服的开关量输入切换速度/位置模式。
- 4. M28 使 YTRF 输出低使主轴伺服工作于速度模式, M29 使 YTRF 输出高处于位置模式。
- 5. 在进行回转体切削时, 先执行 M28, 使主轴伺服进入速度模式, 切削外圆、端面等。
- 6. 在设定主轴进入位置模式前,先执行 M29,然后使 Y 轴返回其机械零点,进行绝对定位,以后可进行 Y 轴与 Z、X 轴的二轴或三轴插补。
 - 7. 有关参数:
 - B145: =0: 主轴工作于正常的 M03, M04, 模拟量控制方式。
 - =1: 速度位置方式。
 - B143: =0: 主轴停(M05)指令不发出M29。
 - =1: 主轴停 (M05) 指令发出 M29 (讲入位置模式)。

5.4 外部功能控制

5.4.1 三位开关

三位开关可方便地实现自动加工下进给与主轴的暂停。

注意,在三位开关暂停或主轴停时,系统副面板上的主轴操作均可有效,但一旦三位开关恢复到程序运行时,系统均恢复自动加工程序中设定的转速与转动方向。

螺纹暂停:只有在 Z 轴回到螺纹循环起点时,才暂停,同时主轴不停止运转。

B152: =1: 三位开关有效,此时任何自动循环的启动必须将三位开关拨到运行位

P102#: 三位开关程序运行的输入端子号

P103#: 三位开关主轴暂停的输入端子号

5.4.2 系统对进给轴的控制

- 1. 系统对进给的脉冲输出方式以进给脉冲和方向脉冲输出。
- 2. 进给轴控制的主要选项

以下参数置成一时分别开放 Z Y X 各轴的对应功能,设成 0 时则不开放。

1. 电子齿轮: B006~B008 2. 螺距补偿: B016~B018 3. 反向间隙补偿: B026~B028 4. 机械零点: B036~B038 5. 各轴反向运行: B086~B088 6. 圆坐标显示: B106~B108 7. 抱闸控制: B196~B198

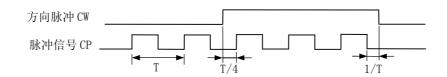
说明:

- 1. 抱闸有效时,各轴抱闸均由 XTRF, YTRF, ZTRF 输出。
- 2. 上电后,系统检测到伺服就绪信号后须延时一段时间输出抱闸信号(时间由 P104# 定义)
- 3. 一旦系统检测到驱动报警,则撤销所有抱闸。
- 4. 圆坐标以360度作为坐标显示数值上限。

5.4.3 伺服单元与系统应答逻辑

在上电时,伺服的上电过程与系统的上电过程有严格的先后关系 原则:

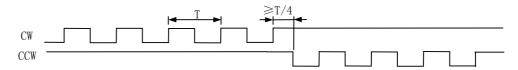
- 1. 系统必须首先上电或者系统与驱动器同时上电
- 2. 伺服强电电源一般分两组,一组 r, t 为单相 220V,供伺服内部的控制电路使用,一组 R, S, T 为三相 220V,经过大功率模块逆变控制,为交流伺服电机提供电源,称为主回路。
- 3. 对于要求很高的场合,建议 R, S, T 上电在 r, t 之后进行。


系统对伺服的上电过程控制由以下步骤组成。

伺服单元 R, S, T 的上电过程:

- 1. 系统上电延时,时间由 PB5#决定,该时间后系统认为伺服的控制电源 r,t 已上电
- 2. PB5#延时结束后,系统输出 R,S,T 闭合的 M 功能输出,该 M 功能口的输出口号由 P99#定义。该输出口可驱动中间继电器带动交流接触器使 R,S,T 加载到伺服驱动上。
 - 3. 伺服输出就绪就绪信号与系统输出各轴使能信号的先后不同,系统由 B084 决定
 - (1) B084=0: 系统先检测各轴的就绪信号有效, 然后输出各轴的使能。
 - (2) B084=1: 系统先输出各轴的使能, 然后检测各轴的就绪信号。
 - 4. B031=0: 任何情况下系统不输出使能。 B031=1: 根据 B084 的状态,系统输出每个轴的使能信号(不可选)
 - 5. B096、B097、B098 =1: 检测 Z、Y、X 三轴的就绪信号; =0: 不检测。
 - 一旦系统检测到各轴就绪信号有效,并已输出使能,同时又无其他严重报警,系统 便处于待命状态,可以正常工作。

5.4.4 系统对进给轴的脉冲输出方式:


最大脉冲频率: 1MHz (对应于1微米分辨率的进给速度为60m/min),脉冲输出波形:

- 1. 系统保证在换向时方向脉冲的前沿与后沿均覆盖脉冲信号。1/4 的脉冲周期
- 2. 脉冲信号为 1/2 占空比。
- 3. CP 信号在低振动输出模式下脉冲波动率≤125ns(位参数 B101=0),速度精度为
- 7.5mm/min。在高精度速度控制方式下(位参数 B101=1)平均速度波动<0.5%.
- 4. 高转速加工大螺纹螺距时,可设定 B091=1(开放进给柔性处理)改善螺纹加工品质:
 - 5. 双脉冲方式(软件版本 V5.0 以上有效,仅针对有 USB 接口的数控系统)

本模式为选件,标配不提供,用户可向公司提出定制后,通过 Internet 访问公司网站并下载系统软件,再用 USB 接口升级系统软件(或在订货时指明)。

双脉冲方式的波形:

5.4.5 软限位

软限位由系统控制,在工件坐标或机床坐标运动到超过某一范围时发出报警信号并停止运动,切换到手动模式

软限位由以下参数模式

位参数:

- 1. B022 =1: 开放软限位功能
- 2. B024 =0: 软限位必须在返回机械零点后才有效。=1: 软限位常有效(不推荐使用)
- 3. B029 =0: 以机床坐标作为软限位依据 =1: 以工件坐标为软限位依据 P 参数:

P60#~P65#分别为 x, y, z 各轴在所选择的坐标系零点正负两方向软限位的极限坐标范围(参数见手册)

说明:

一旦各轴运动时操过软限位范围,系统立刻降速并停止运行,此时会超过软限位区间一 定距离,该超距离与软限位发生时的速度有关,并且该超越距离与速度和加速度有关。

5.4.6 机械零点开关设置

机械零点又称机床零点或参考点,用于上电时在机床上的固定位置恢复工件坐标系并统一内部刀具,坐标、保护等重要数据体系。

照顾到早期数控系统的操作习惯,系统除上电必须回零模式外(B033=0),又开放了上电不需回零模式(B033=1)。

机床零点的信号接入分两种方式

- 1. 一个接近开关: 每轴采用一个接近开关作为零点信号, 简称单信号回零。
- 2. 初定位开关与伺服电机 Z 信号找零方式,简称双信号回零。 系统推荐采用上电必须回零模式及第二种零点开关接入方式。

回零的操作方式

1. 上电回零

选择"机床零"方式后,手动方向进给键,该轴找零,B192=1时,不必连续按方向进给键。

2. 程序回零

G74: 在上电必须回零模式下,上电后 G74 无效,只能按手动方向键回零

与回零有关的参数

设定基本参数(位参数)

B036~B038=1: 开放有关各轴回零

B034 =0/1: 决定是否恢复工件坐标系

B033 =0: 上电时必须回零才能加工: =1: 上电后无须回零就可以加工。

B116~B118 =0:选择该轴双信号回零;=1:选择该轴单信号回零。

B136~B138 =0: 沿各轴正方向寻找零点信号。=1: 沿各轴负方向寻找零点信号。

B186~B188 =0: 双信号回零时,该轴换向运动寻找电机 Z 脉冲信号。

=1: 双信号回零时,该轴不换向运动寻找电机 Z 脉冲信号。

5.4.7 换刀过程

系统可处理排刀,电动刀架,液压/伺服驱动的刀架等若干方式,用户由 P5#参数定义 换刀方式:

P5# 0 1 2 3 4 5 6 7 8 9 10 排刀 电动刀架 2~10为用户定义(选件)

最多可定义 10 种换刀形式,系统标配为 0、1 两种,其他的刀架控制用户须提前订货或提前说明刀架形式。

系统最多控制 10 把刀

P2#定义刀具数量

与电动刀架,换刀的有关参数如下:

P1#: 刀架夹紧时反转时间。过长可能造成刀架电机发热,过短则刀架可能未夹紧。

P2#: 电动刀架上的刀具数量, P2#=4 时, T05~T08 可作为其它输入口使用

P5#: 刀架形式的定义

P47#: 刀架正反转换向之间的延时。一般适用于较大型的刀架

P79#: 刀架正转最长时间,刀架正转经过 P79#定义的时间,如仍未找到目标刀架,可认为刀架正转卡住或刀具信号检测不正常,系统将提示 44#报警。

B147 =0: 在换刀结束后再次确认是当前刀号是否是预期的刀号; =1: 不再确认。

对于其他形式的换刀机械控制 P5#=2 或以上,请用户与系统厂家联系取得相关资料. 面板顺序换刀键:

面板上的顺序换刀键:按 P2#定义的刀具数目顺序换刀,如系统未检测到刀号,该功能无效。若选择排刀(P5#=0),系统顺序调整刀补号及坐标.

5.4.8 机床报警处理

一、限位

由于各坐标轴运动超出了设定范围(超程)而造成的错误报警,一般分为硬件超程(由机械上限位开关动作引起)和软件超程(超出预期设定的坐标最大范围)

限位发生后,系统执行以下动作过程

- 1. 各坐标轴降速到零停止
- 2. 切换到手动进给模式、

- 3. 关主轴, 关冷却
- 4. 提示"错误40"报警

限位发生后,引起限位该轴不能再沿该方向运动,其反向运动允许,以退出限位状态。数控系统只能定义正向/负向限位,即各轴共同使用一个正方向限位输入,共同使用一个负方向的输入,一旦某轴的正向(或负向)限位发生后,其它各轴在该方向也不能运动,直到退出限位为止。

硬件超程的输入有参数定义输入号: 正向限位输入号 P72#, 负向限位输入号 P73#

二. 驱动报警

1~3 处理步骤同限位

4. 如 B196~B198 设定了抱闸有效,则撤销所有各轴抱闸信号 驱动报警由电机控制信号插座的 XERR, YERR, ZERR 定义接入系统。

三. 急停报警

急停用于出现紧急情况时迅速切断机床系统的工作状态用。

急停按钮有两付触点,一常开一常闭,常开触点式接入系统内部的输入信号,产生 55 #号报警,正常情况下切断进给与主轴的工作状态并封锁一切操作。

急停处理:

- 1~3 处理步骤同限位
- 4. 显示"错误55"
- 5. 死锁键盘, 直到急停信号撤销

四. 复位按钮

软件 V5.0 以下为系统 CPU 的硬复位信号。软件 5.0 及以上软件版本为软复位,用于当前状态的撤销,具体见该版本的说明

五. 外部一般报警

用户可根据外部机械结构需要接入该报警信号,该信号可由 B142 决定是作为报警提示还是与严重报警一样处理

B142: =0: 报警时仅提示"错误 42",不做任何操作。=1: 处理步骤同限位 $1\sim3$ 外部一般报警输入信号接入端子由 P74#定义

六. 抱闸控制

B196~B198 定义了 Z, Y, X 三轴的抱闸功能开放是否, 当某位参数设为 1 时, 对应的轴开放抱闸功能, 抱闸控制信号(通电信号)由各轴的 TRF 输出(XTRF, YTRF, ZTRF), 它将带动一只继电器,接通抱闸电源,使抱闸制动失效。

抱闸一旦定义, 它将在系统发出使能或监测到伺服 Ready 信号后延时 P104#定义的时间后, 输出抱闸信号

一旦某一轴的驱动报警,系统将关断所有抱闸信号。

5.5 工件坐标系的产生和恢复

系统内部有二级坐标系,机床坐标 XP, YP, ZP, 其零点就是机械原点,工件坐标 X, Y, Z(即以大字符显示的坐标),原点在试切对刀时建立并保存在系统的数据体系内。两个坐标的坐标值都表示当前刀具的对刀的刀尖点相对与坐标原点的距离。

机床坐标在返回机械零点时建立,而工件坐标是由试切对刀过程中系统计算出来,以后可通过返回机械零点自动恢复工件坐标系。对于没有机床零点的机床,只能靠系统的存储器记忆。因此强烈建议用户采用机械原点装置。

5.5.1 工件坐标系的产生模式

原则上数控机床的坐标系(机床坐标及工件坐标)应该在机床上电时通过返回机械零点来恢复工件坐标,但在实际操作中由于经济型数控的操作习惯,相当一部分机床未安装机械零点传感器,因此数控系统有两种模式可洗

1. 上电后必须返回机床零点

上电后只能通过选择"机床零"模式手动按方向进给键,找到机械零点,恢复工件坐标系,然后自动加工,MDI等方式才有效

2. 上电后无需返回机床零点

依靠保存在掉电保护存储器内的坐标信息等开机后即可操作,工件坐标及机床坐标均与 上次关机前相同,由于关机后电机拖板处于自由状态,或上次关机时因为突然掉电造成电机 过冲,使得系统恢复的坐标与实际位置不符,造成故障。

5.5.2 机床坐标及工件坐标的产生

1. 上电必须回零模式(B033=0)

系统第一次上电时,各种坐标及刀具信息均处于不确定状态,必须经以下顺序产生各种数据:

- (1) 刀具装夹: 在刀架(或排刀架上)至少安装一把刀具作为当前刀
- (2) 开机上电
- (3) 内存清零(采用参数主功能中的清内存功能)
- (4) 各轴返回机床零点
- (5) 试切对刀,产生当前刀具的工件坐标系
- (6) 其余刀具分别对刀
- (9) 关电后再次上电,返回机床零点后,系统恢复当前刀具位于机床零点处的工件坐标,工件坐标生效
 - 2. 上电后无需回零模式 (B033=1)

仍采用必须回零模式的操作步骤,只是第4条步骤可以省略

5.5.3 与坐标系有关的参数选项:

对于车床控制:

B033 =0: 上电后必须返回机械零点

=1: 上电后无须返回机械零点

B034 =0: 根据刀号恢复工件坐标

=1: 工件坐标清成零值

对于车床模式且电动刀架(P5#=1)方式,如果在机械零点处系统未检测到有效刀号信号,则工件坐标一律清零。对于排刀,刀号一律设成零号,而上电后刀补号一律设为1,并恢复1#刀的工件坐标。对于其他形式的刀架,用户须指定上电后的刀号产生方式。

上电无须回零方式下, 排刀的刀补号由系统记忆产生。

对于铣床系统,三轴坐标在回零后有二种选项:

B033 =0: 上电后必须返回机械零点

=1: 上电后无须返回机械零点

B034 =0: P21#参数恢复 X 轴的工件坐标。 P22#参数恢复 Y 轴的工件坐标。 P75#参数恢复 Z 轴的工件坐标。

B034 =1: X Y Z 机械原点处各轴工件坐标清零。

5.5.4 坐标变换 G54-G57

系统上电时一律处于 G54 状态,此时工件坐标可由返回机床零点时从系统中存储的有效信息中恢复,而系统设定的其他坐标变换 G55-G57 则与传统的坐标变换略有不同以方便用户实现坐标变换操作

G54: 恢复上电时的工件坐标

G55: 绝对值工件坐标变换: 以 G55 后面的坐标值所处的位置作为新的工件坐标值的零点

G56: 相对值坐标变换: G56 后所编的坐标值为相对于当前的偏移量,偏移后的位置作为新的工件零点

G57: 当前点偏置: 以刀具当前所处的位置作为新的坐标零点设定坐标系在自动程序执行完成后自动执行 G54 恢复初始工件坐标系,以防造成混乱在 MDI 方式下,G55-G57 无效,它们只在程序中有效

5.5.5 加工开始位置设定

为方便操作者将刀具移到某固定位置作为加工的开始点,系统设定了两种方式将刀具移动到该位置:

G75: 以机床坐标值返回加工开始点

G76: 以工件坐标值返回加工开始点

对 G75: 系统参数 P8#, P24#, P9#分别为 X, Y, Z 轴在机床坐标下加工开始店的坐标值对 G76: 系统参数 P18#, Pb4#, P19#分别为 X, Y, Z 轴工件坐标下加工开始点的坐标值 G75XYZ 或 G76XYZ 的运行结果分别运行到以下坐标

	X	Y	Z
G75	P8#	P24#	P9#
G76	P18#	P22#	P19#

5.5.6 刀补修调与刀具偏置

实际刀具在加工中会出现二种情况影响坐标值及加工尺寸,须采取以下手段进行坐标调整

1. 刀具微量磨损

采用刀补值修调:微量修调值加进刀补值或从刀补值中减去,取决于位参数 B151 B151 =0:修调量加进刀补值 =1:修调量从刀补值中减掉

2. 刀尖崩裂

从刀夹中取下刀具重磨或更换,刀尖坐标有较大变化,此时只对该刀重新进行试切对刀以建立它的刀补值及对应的工件坐标,但这个功能的实现有以下前提

(1) 上电必须回零模式

上电时如果以这把刀返回机械原点,它必须已经对过刀。

(2) 上电无需回零模式

从上次对完刀到目前重新对刀时,必须从未执行过以下功能之一:

- a)系统内存清零
- b)执行过坐标偏置
- c) 发生过电机堵转,闷车等现象而重新设定过工件坐标系

当不能确定是否发生以上情况时,强烈建议用户更换其他刀具时对所有刀具重新对刀

3. 刀架整体偏移

伺服电机因堵转,闷车造成坐标整体偏移会造成工件坐标系统被破坏,此时

(1) 上电必须回零模式

用户只需重新将各轴返回机械零点, 工件坐标系自动恢复

(2) 上电无须回零模式

发现工件尺寸在 X, Z 方向变化若干,可用坐标偏置功能输入 X, Z 方向的变化值,工件尺寸变化多少便输入多少,工件尺寸增加输入正值,尺寸减少输入负值.

5.6 刀尖半径补偿

5.6.1 概述

当我们用试切对刀时,一般总是在 X 与 Z 方向分别切削工件,通过一系列操作后建立工件坐标,一般情况下 X,Z 二方向试切对刀后,工件坐标是指刀具刀尖 A 点的坐标(如图 5-1),但实际刀尖总有一段 R 圆弧,造成 A 点实际上是一个假想的点。

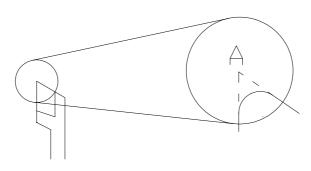
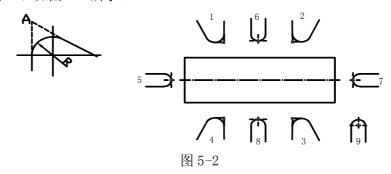
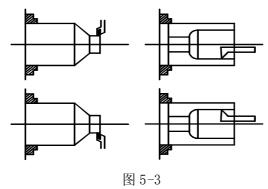



图 5-1

在X、Z二方向复合运动切削时,将会造成轮廓误差。

5.6.2 刀尖的相位定义

由于刀尖的对刀方式及刀具的实际形状与工件的相对位置不同,产生了刀具与工件的相对位置的变化不一,如图 5-2 所示。


以上共8种,分别编号1~8相位,还有一种持对情况:即刀尖的对刀点位于刀尖的圆弧中心(例如采用光学对刀仪可能对出这种位置)定义为9#相位

以上信息必须记忆在刀具表中

5.6.3 刀具参数表

每把刀共有 4 个参数, 其中 DX, DZ 是刀补值, R 是刀尖半径, PH 则是这把刀的相位。

5.6.4 刀尖补偿的轨迹方向定义

5.6.5 刀补建立与撤销过程

对于车床,一把刀具在对好刀后,其工件坐标只是刀尖上 A 点相对坐标原点的坐标 在刀补过程中,其坐标运动也仍然是 A 点的坐标,除非通过修改坐标系的指令修改坐标 系将工件坐标的坐标点移到别处。

刀补过程分三个阶段

1. 刀补的建立; 2. 刀补过程; 3. 退出刀补 为方便起见以后的描述均可认为刀具尖端形状为半径 R 的部分圆或全圆

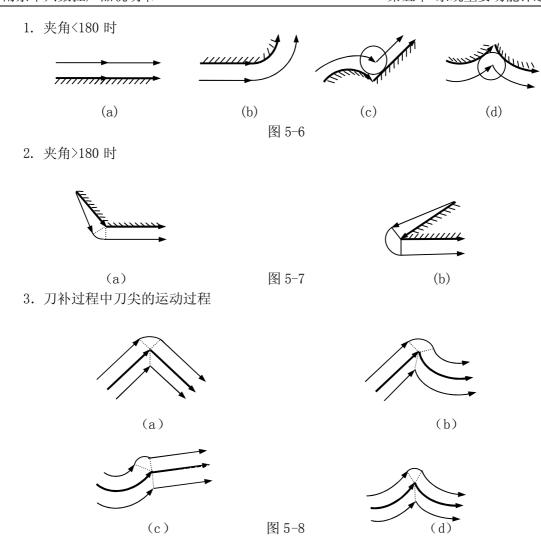
1. 刀补建立

只能以 G01 作为刀补建立的语句,使系统从无刀刀补状态进入刀补过程,系统内部的坐标系进行适当调整,典型语句如下:

G42 T03 F100

G01 X30 Z100

或 G42 G01 X30 Z100 T01 F100


轨迹描述:

对于夹角小于 180 情况

刀补过程中刀尖的运动过程

系统对于轨迹相交的一些特殊情况无法处理时将会报警。 典型的刀补程序举例(其附录例四):

5.7 系统软件升级

华兴数控系统具有通过 U 盘和串口进行系统升级的功能。在用户现场,无须打开机箱便可进行升级,升级对系统中的原有参数文件、机床坐标、刀补及机床状态信息不产生影响,即升级完成后用户不需重新配置参数文件、建立刀补等操作,包括用户开机界面也不受影响。

5.7.1 系统软件升级

5.7.1.1 何时需要升级系统软件

- 1. 用户自行定制的新功能的更新软件。
- 2. 系统增加了新的功能。
- 3. 系统软件更新。

5.7.1.2 如何获取升级软件

获取该升级软件有以下几种途径:

- 1. 由华兴技术服务人员直接提供。
- 2. 通过 Email 方式,由南京华兴数控公司提供。

注: 升级软件名称为:

31XTA: **S31XTA** 32XTA: **S32XTA** 300T: **S300T** 99TA: **S99TA** 99TB: **S99TB** 99TY: **S99TY** 99UZ: **S99UZ**

5.7.1.3 如何进入系统升级界面或下载用户图片界面

按硬复位键复位系统(硬复位键位于 U 盘插口旁,需要打开 U 盘防护盖才能看到),在按系统硬复位键或者重新上电启动系统之前按住 ALT 键,直到弹出"请输入密码"提示为止方可松开。输入密码(密码为 GGG),输入完成后按回车键(ENTER)确定,系统将弹出系统升级界面,如图所示:

31XTA升级程序V1.0

- 一. 软件升级操作步骤:
- 1. 请确认U盘已插入或串口已连接
- 2. 选择U盘方式升级按F1, 串口方式升级按F2
- 3. 选择升级系统软件按F3, 更新开机画面按F4, 写字库按F5
- 二. U盘升级相关提示
- 1. 升级系统软件,U盘根目录必须存在"S31XTA"文件
- 2. 升级开机画面,U盘根目录必须存在"U31XTA"文件

U盘 串口 系统软件 开机画面 汉字库

图 5-9

升级界面介绍:

U 盘:按该键选择通过 U 盘升级

串口:按该键选择通过串口升级

系统软件:按该键选择升级系统软件

开机画面:按该键选择更新用户界面

汉字库:按该键选择写系统汉字库,此功能在出厂时使用,最终用户请不要使用.

5.7.1.4 如何通过 U 盘进行系统升级

操作流程如下:

- 1. 获取系统升级软件, 获取方式见 5.7.1.2 节描述;
- 2. 将获取到的升级软件存到 U 盘根目录;
- 3. 进入系统升级界面(参照 5.7.1.3 操作):
- 4. 在系统升级界面下按 F1 (U盘)键,再按 F3 (系统软件)键,即开始系统升级操作,并在屏幕下方显示"正在升级",同时显示升级进度,直到界面上出现"升级成功"信息出现,表示系统升级已完成;
- 5. 重启系统,查看系统能否正常启动,若可以正常启动,则说明系统升级成功。这时可以操作机床进行简单测试,比如进行手动进给操作,换刀等,若测试正常,可以进行试加工操作。测试正常,则可以进行正常加工操作。

5.7.1.5 如何通过串口进行系统升级

操作流程如下:

- 1. 获取系统升级软件, 获取方式见 5.7.1.2 节描述:
- 2. 进入系统升级界面(参照 5.7.1.3 操作);
- 3. 在系统升级界面下按 F2(串口)键,再按 F3(系统软件)键,即开始系统升级操作, 并在屏幕下方显示"正在升级",同时显示升级进度,直到界面上出现"升级成功" 信息出现,表示系统升级已完成;

4. 重启系统,查看系统能否正常启动,若可以正常启动,则说明系统升级成功。这时可以操作机床进行简单测试,比如进行手动进给操作,换刀等,若测试正常,可以进行试加工操作。测试正常,则可以进行正常加工操作。

5.7.2. 用户开机界面更新

系统提供给用户一定的空间来存放用户开机界面,用户可以通过 U 盘或串口将编辑好的图片下载到数控系统,以后系统启动时显示开机界面既为您所更新的图片。系统支持的图片最大尺寸为 480×234 像素,彩色系统使用 256 色。

5.7.2.1 用户如何编辑自己的开机界面

用户可以使用 Windows 操作系统的画图板工具进行编辑图片,将编辑好的图片存为 256 色,480×234 像素,调色板必须使用标准的 256 色,否则系统显示的颜色会有偏差。

5.7.2.2 如何通过 U 盘更新用户界面

U 盘升级开机画面时对文件名的要求:

31XTA: **U31XTA** 32XTA: **U32XTA** 99UZ: **U99UZ** 99TA: **U99TA** 99TB: **U99TB** 99TY: **U99TY**

操作流程如下:

- 1. 将用于升级的文件存到 U 盘根目录:
- 2. 进入系统升级界面(参照 5.7.1.3 操作);
- 3. 在系统升级界面下按 F1 (USB) 键,再按 F4 (用户界面) 键,两个键显示为按下状态,即开始系统升级操作,并弹出下载用户图片过程界面,直到界面上出现"升级成功"信息出现,表示用户图片下载更新已完成;
- 4. 重启系统,查看界面显示是否正确。

5.7.2.3 如何通过串口更新用户界面

操作流程如下:

- 1. 进入系统升级界面(参照 5.7.1.3 操作);
- 2. 在系统升级界面下按 F2(串口)键,再按 F4(用户界面)键,两个键显示为按下状态,即开始系统升级操作,并弹出下载用户图片过程界面,直到界面上出现"升级成功"信息出现,表示用户图片下载更新已完成;
 - 3. 重启系统,查看界面显示是否正确。

第六章 数控系统连接

6.1 系统组成

6.1.1 数控系统控制单元框图

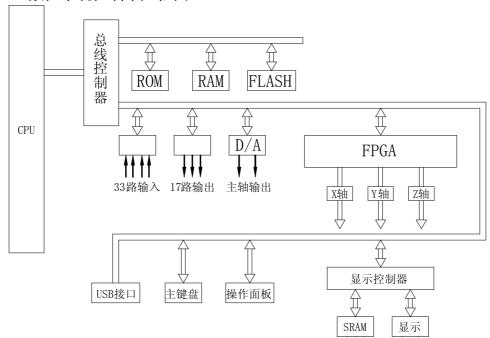
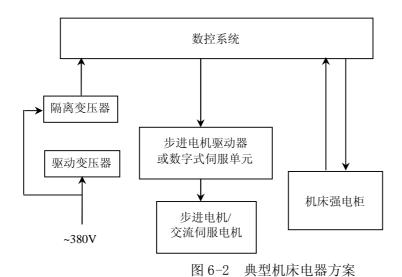
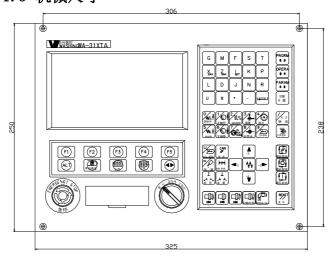
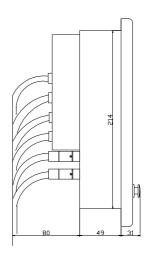
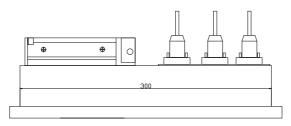
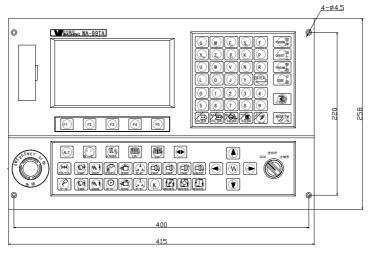



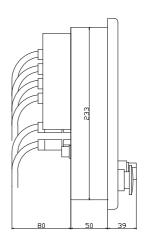
图 6-1 数控系统控制单元图

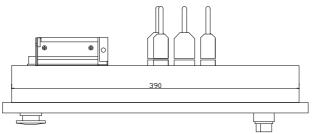

6.1.2 一个典型的机床电器方案


由数控系统构成的机床数控体系应包括以下内容:


- 1. CNC 控制单元及附件
- 2. 步进电机驱动电源/脉冲式伺服单元
- 3. 步进电机/伺服电机
- 4. 机床配电柜


6.1.3 机械尺寸





(a) 31XTA/32XTA 安装尺寸图

(b) 99TA/99TB/99TY 安装尺寸图 图 6-3 机械安装尺寸图

6.1.4 接口定义一览

6.1.4.1 前面板(塑料箱盖内)定义

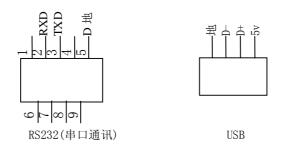


图 6-4 前面板接口定义

6.1.4.2 后盖板接口定义

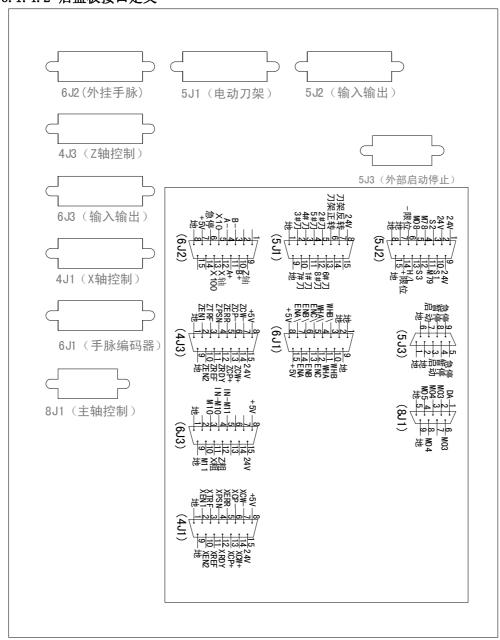


图 6-5 后盖板接口定义

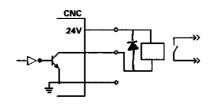

6.1.5 输出信号对照表

表 6-1 31XTA/32XTA/99TA/99TB/99TY/99UZ/300T 输出端口定义

插座及脚号	脉冲输出	保持输出	取消输出	补充功能	备注
4J1-P2 (P10)	M85	M20 K15	M21 K15		X 轴伺能,触点输出
4J1-P3	M84	M20 K14	M21 K14		X轴开抱闸输出
6 J3-P10		M20 K13	M21 K13	M11	主轴松开输出
6J3-P3		M20 K12	M21 K12	M10	主轴夹紧输出
4J3-P2 (P10)	M81	M20 K11	M21 K11		Z 轴伺能,触点输出
4 J3-P3	M80	M20 K10	M21 K10		Z轴开抱闸输出
5J1-P6	M75	M20 K4	M21 K4	刀架正转	功率输出
5J1-P7	M74	M20 K5	M21 K5	刀架反转	功率输出
5J2-P3		M20 K16	M21 K16	M15/S2	S1, S2, S3 互锁
5J2-P4	M78	M20 K8	M21 K8		功率输出
5J2-P5	M76	M20 K6	M21 K6	M08	M09 撤消 M08, 功率输出
5J2-P10		M20 K17	M21 K17	M14/S1	S1、S2、S3 互锁
5J2-P11	M79	M20 K9	M21 K9		
5J2-P12	M77	M20 K7	M21 K7	M16/M12/S 3	S1、S2、S3 互锁, 功率输出
8J1-P2 (P6)	M71	M20 K1	M21 K1	M03	MO3、MO4互锁,触点输出
8J1-P3 (P8)	M72	M20 K2	M21 K2	M04	MO3、MO4互锁,触点输出
8J1-P4	M73	M20 K3	M21 K3	M05	M05 撤消 M03、M04 互锁, 功率输出

说明: 触点输出: CNC 内部为继电器输出触点信号,只能承受≤36V电压,≤500mA电流,严禁将高于此功率的控制电源接入内部触点。

功率输出: CNC 内部由功率三极管输出,驱动外部中间继电器。所有外部继电器的电流总和≤200mA。

6.1.6 输入信号对照表

表 6-3 31XTA/32XTA/99TA/99TB/99TY/99UZ/300T 输入信号对照表

插座及引脚	条件输入	默认功能	备注 (默认功能)
4J1-P4	MO1 L14/K14	XPSN	X 轴准停(到位)输入
4J1-P5	M01 L16/K16	XERR	X轴报警输入
4J1-P11	M01 L26/K26	XREF	X 轴参考点伺服 Z 脉冲输入
4J1-P12	MO1 L15/K15	XRDY	X轴伺服准备就绪输入
6J3-P4	M01 L10/K10	INM10	主轴夹紧按钮输入
6J3-P5	M01 L12/K12	INM11	主轴松开按钮输入
6J3-P11	M01 L27/K26	XRGH	X 轴参考点输入,由 66 号 P 参数定义
6J3-P12	MO1 L11/K11	ZRGH	Z 轴参考点输入,由 68 号 P 参数定义

插座及引脚	条件输入	默认功能	备注(默认功能)
4J3-P4	MO1 L2/K2	ZPSN	Z 轴准停(到位)输入
4J3-P5	MO1 L1/K1	ZERR	Z 轴报警输入
4J3-P11	M01 L28/K28	ZREF	Z 轴参考点伺服 Z 脉冲输入
4J3-P12	MO1 L9/K9	ZRDY	Z轴伺服准备就绪输入
5J1-P2	MO1 L17/K17	3#刀	3#刀信号输入
5J1-P3	M01 L21/K21	4#刀	4#刀信号输入
5J1-P4	M01 L22/K22	5#刀	5#刀信号输入
5J1-P5	M01 L24/K24	2#刀	2#刀信号输入
5J1-P10	M01 L23/K23	7#刀	7#刀信号输入
5J1-P11	M01 L20/K20	1#刀	1#刀信号输入
5J1-P12	M01 L19/K19	8#刀	8#刀信号输入
5J1-P13	M01 L18/K18	6#刀	6#刀信号输入
5J2-P6	MO1 L4/K4	LIM-	各轴负限位输入,由73号P参数定义
5J2-P13	MO1 L5/K5	H/L	主轴高/低速档位信号输入
5J2-P14	MO1 L3/K3	LIM+	各轴正限位输入,由72号P参数定义
5J3-P3, 5J3-P6	M01 L6/K6		外接启动输入
5J3-P4, 5J3-P7	MO1 L7/K7		外接暂停输入
5J3-P5, 5J3-P8	M01 L8/K8		外接急停输入
6J2-P5		×10	手轮倍率×10 输入
6J2-P13		×100	手轮倍率×100输入
6J2-P6			手轮急停输入
6J2-P12		X轴	手轮 X 轴选输入
6J2-P9		Z轴0	手轮 Z 轴选输入

注: M01 L__; M01 K__ L 为低电平有效, K 为高电平有效

L或K后的数字为输入编号

6.2 强电供电

6.2.1 安装要求

数控系统应处于良好的机械、电环境下工作,用户应保证其有合适的机、电安装,输入、 输出接口应规范连接。

对于数控系统,用户应制作箱体用于安放该系统,系统面板上 6 个Φ4.5 通孔用 M4 螺钉固定于箱体上。箱体体积应足够大,应考虑系统后面接插件长度及多股线弯曲长度。箱体应散热良好。

6.2.2 强电供电

数控系统要求供电电压在标称电压的±10%范围内。建议采用150VA的隔离变压器,如图6-7所示:

注:本文提到的变压器输出电压都是空载电压,其容量不能低于规定的值。

6.2.3 接地

在电气安装中接地很重要,合理接地可使数控系统运行更稳定可靠并防止漏电事故发生。 数控系统外部都有接地点,使用时须将此点可靠地与大地相连。做到:

- 1. 保证整个机床电器系统必须接到一个主接地点上并合理接大地。
- 2. 与 CNC 系统进行通讯的电子设备其信号地必须连至该设备的接地点,同时该点必须与机床系统的主接地点良好连接,连接线缆的截面积不小于 2.5mm²。
 - 3. 信号电缆需有屏蔽层。
 - 4. 严禁用交流零线(三相电的中线)作为接地线 PE。

6.2.4 强电安装中注意事项

数控系统必须与机床强电部分连接才能控制整个机床的各种动作。为保证系统可靠工作, 机床强电部分所有感性负载均应加装相应的灭弧装置。建议如下(如图 6-8 所示):

- 1. 交流接触器线圈,采用单相灭弧器并联于接触器线圈两端;
- 2. 直流继电器线圈,并联二极管续流。

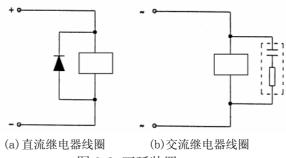


图 6-8 灭弧装置

交流电动机:根据电动机是单相还是三相选用单相/三相灭弧器,不得用分立的电阻、电容自制吸收回路。RC 必须装到开关或接触器的负载端,典型接法如图 6-9 所示:

6.3 数控系统内部连接

6.3.1 输入、输出示意图

6.3.1.1 输入接口电路示意图

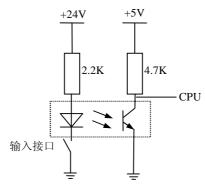
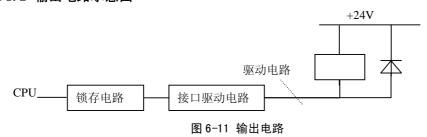



图 6-10 输入接口电路

6.3.1.2 输出电路示意图

6.3.2 数控系统输入、输出接口电路原理图

6.3.2.1 电动刀架接口

数控数控系统电动刀架刀号检测口如图 6-12 所示。

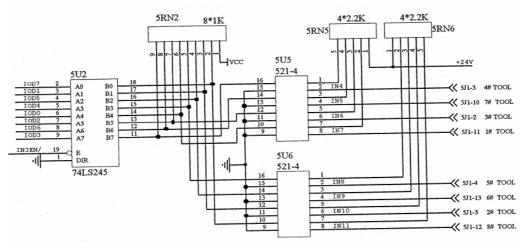


图 6-12 电动刀架接口电路

6.3.2.2 主轴接口

该接口 MO3、MO4 输出原理如图 6-13 所示:

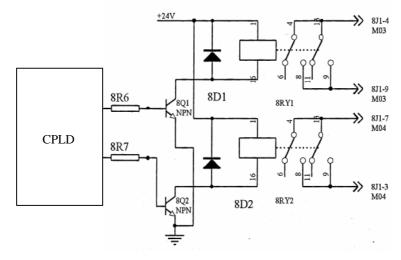
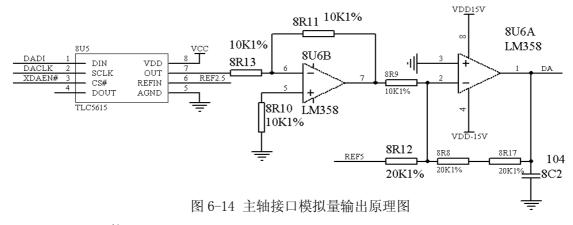



图 6-13

该接口模拟量输出原理如图 6-14 所示:

6.3.2.3 RS232 接口

该口为简化了的异步 RS232 口,内部原理如图 6-15 所示:

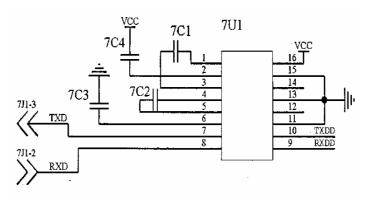


图 6-15 异步 RS232 接口电路图

6.3.2.4 手脉、编码器接口

如图 6-16 所示, 在数控系统中, 手轮和编码器不能同时有效。

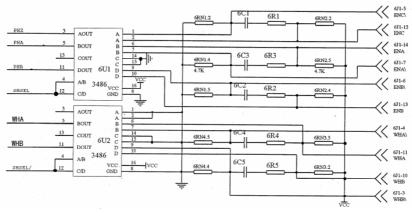
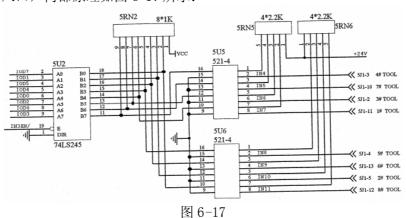
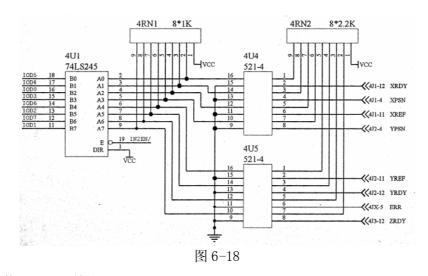



图 6-16 手脉、编码器接口原理图


6.3.2.5 外接启、停及急停接口

该口为输入口,内部原理如图 6-17 所示:

6.3.2.6 X、Y、Z轴伺服准备好、外部准停、参考点及报警

该口为输入口,内部原理图如图 6-18 所示:

6.3.2.7 其他S、T、M输出口

该接口主要输出除主 M 功能外的其他信号,如 S1、S2、S3、M79、刀架正转,刀架反转等。

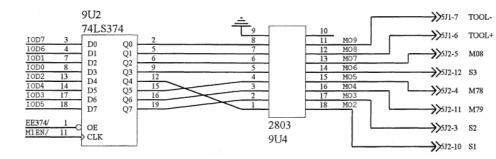
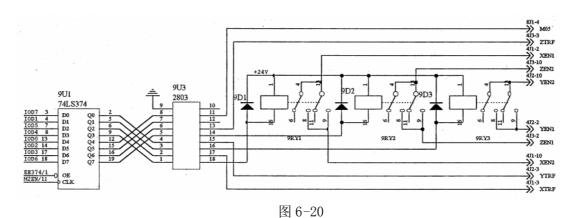



图 6-19

6.3.2.8 伺服使能,伺服电机开抱闸输出口

6.3.2.9 电机信号接口

该口主要输出 X、Y、Z 轴电机驱动信号,每轴又有 CP 和 CW 两路差分输出信号。

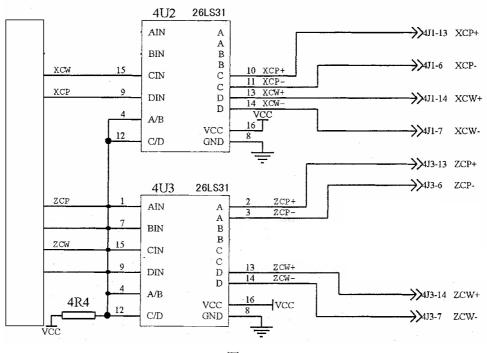
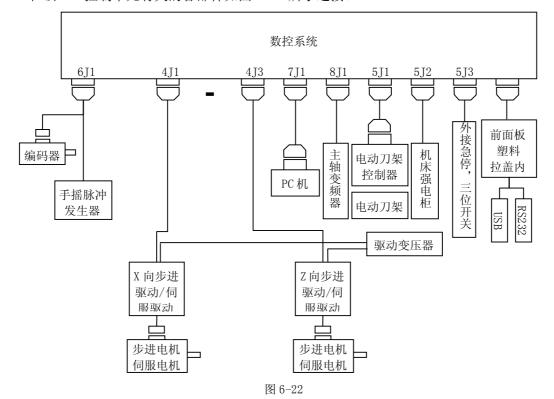



图 6-21

6.4 数控系统信号接接口定义

6.4.1 数控系统外部连接

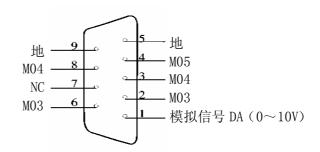
和该 CNC 控制单元有关的各部件如图 6-22 所示连接。

说明: 并非所有系统均含有上述所有接口

6.4.2 主轴接口 8J1

该接口型号为'DB9 孔',与之相连的插头应为'DB9 针'。定义如下:

P1: 模拟信号 DA (0~10V)

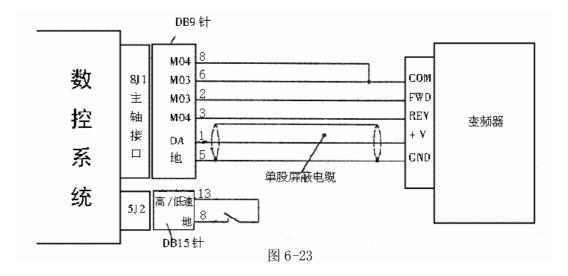

P2: M03 P3: M04

P4: M05 P5: 模拟地

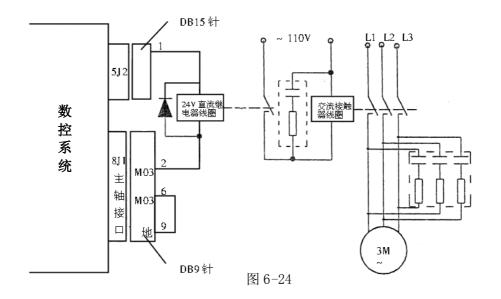
P6: M03 P7: NC (空脚)

P8: M04

P9: 模拟地


说明: M03、M04 为继电器触点输出,对应的脚号为 M03: P2/P6, M04: P3/P8,该触点所接电压≤36V,电流≤500mA, M05 为功率输出。

模拟信号 (DA) 输出 0~10V 模拟电压,接变频器。模拟地与信号地在系统内互连。该线必须单独用一芯屏蔽线,地线为屏蔽层。系统出厂设为 0~+10V,它与触点信号配合可控制变频器正转、反转及变速。要求外设(变频器)吸收电流<5mA。


若主轴有一级机械变速,外部应加一触点作为高/低速(5J2 的 13 脚)输入,使系统判别主轴位于哪一档,以便输出合适的模拟电压。例如系统 3 # 参数为 2000, 4 # 参数为 1000,则有如下对应关系:(假设在 0 \sim 10 V 档)

5J2 的 P12 与 GND 状态 设置主轴转速	断开	连通
S=2000rpm	DA 输出 10.00V	
S=1000rpm	DA 输出 5.00V	DA 输出 10.00V
S=500rpm	DA 输出 2. 50V	DA 输出 5. 00V

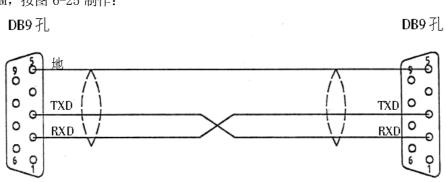
因此当主轴在高速档,应使 5J2 的 P13 与地断开,而主轴在低速档时,应使 P13 与地接通。该接口与变频器连接图如图 6-23 所示。

如直接控制三相电机正转、停,可参考如图 6-24 的基本电路。

6.4.3 串行通信接口 7J1

串行通信接口 7J1 是'DB9针'插座,对应插头为'DB9孔',用于同 PC 机或系统之间互

传程序,接口定义(未标引脚为空):


P1: NC P6: +5V P2: RXD P7: NC

P3: TXD P8: NC P4: NC P9: NC

P5.抽

通信线必须用两芯屏蔽线,且将屏蔽层作地线,

长度≤10M, 按图 6-25 制作:

6.4.4 刀架接口 5J1

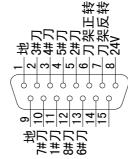
刀架接口 5J1 是'DB15 针'插座,对应插头为'DB15 孔',接口定义见下图(未标引脚为空):

图 6-25

P1: 地

P2: 3#刀

P3: 4#刀


P4:5#刀

P5: 2#刀

P6: 刀架正转

P7: 刀架反转

P8: +24V

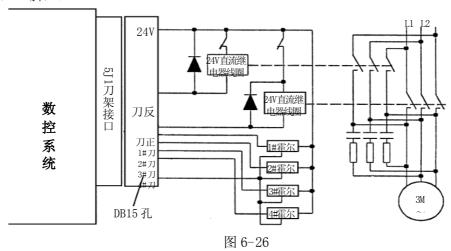
NC3

P9: 地

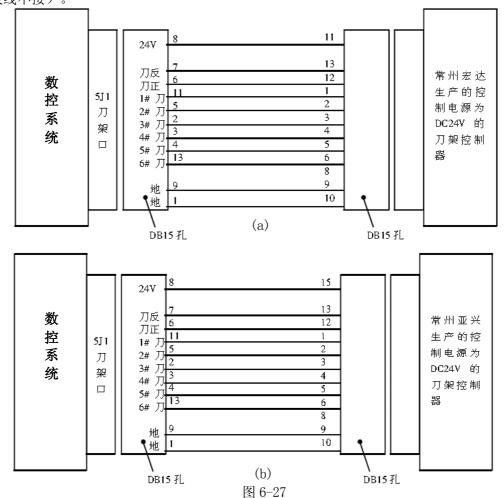
P10: 7#刀

P11: 1#刀

P12: 8#刀


P13: 6#刀

P14:


P15:

说明: 刀架正转,刀架反转为单功率点(0C门)输出,限制电流为 0.5A,外接感性负载(如直流继电器)时需加续流二极管。

1 #刀、2 # 刀、3 # 刀、4 #刀、5 # 刀、6 # 刀、7 # 刀、8 # 刀分别表示电动刀架的刀位输入 用系统电源时外部接线原理如图 6 - 26 所示(以四工位为例,六工位须多接两根线到系统侧的 4 、13 脚)。

用系统电源时外部接线如图 6-27 所示 (以六工位为例,对四工位刀架, CNC5J1 的 P4、P13 两根线不接)。

若用户购买其他型号的刀架控制器,接线应参考其说明书。

6.4.5 电机接口 4J1、4J3

电机信号接口 4J1、4J3 是'DB15 针'插座,插头应为'DB15 孔',分别输出 X、Z 轴电机驱动信号。接口定义: (以 X 轴说明, Z 轴定义将 X 分别换成 Z)

P1: 地

P2: XEN

P3: XTRF

P4: XPSN

P5: XERR

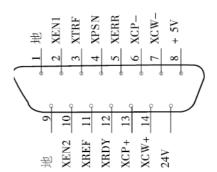
P6: XCP-

P7: XCW

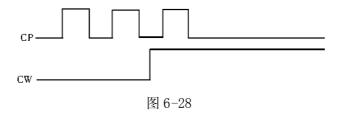
P8: +5V

P9: 地

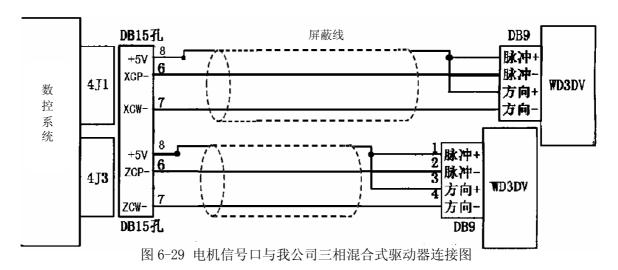
P10: XEN2


TO. ADIVE

P11: XREF


P12: XRDY

P13: XCP+ P14: XCW+


P15: 24V

电机信号接口适用于三相步进驱动器或数字式交流伺服单元。输出控制信号的形式为: CP 脉冲与 CW 方向信号。CP 以正脉冲输出,每一脉冲对应电机进给一步。CW 高电平控制电机正转,低电平则电机反转。脉冲信号为 1/2 占空比,方向信号在换向时,超前脉冲信号 1/4 占空比。

电机信号口与我公司三相混合式驱动器连接如图 6-29 所示:

电机信号口与我公司交流饲服驱动器连接如图6-30所示

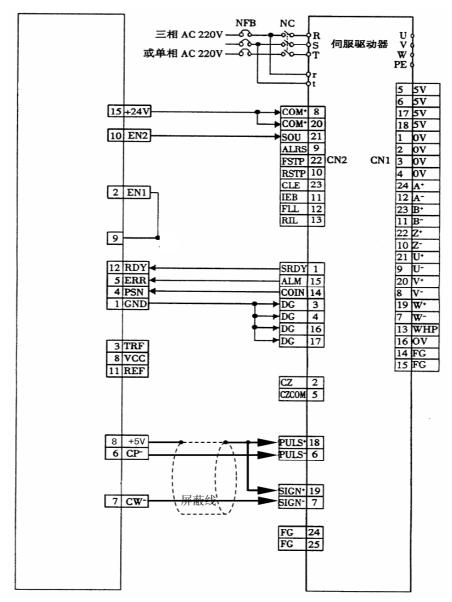


图 6-30 电机信号口与我公司交流饲服驱动器连接图

说明: 凡用屏蔽层连接两边+5V 或 0V 地端子时,不得再用屏蔽层内的芯线连接+5V 或 0V 地。

有关电机控制的其他信号,以 X 轴为例:

P2/P10 XEN1/XEN2: 继电器输出触点对,伺服使能信号,通知伺服可以上电工作。

P12: XRDY: 输入,当伺服单元接受到 XEN1/2 后,上电自检锁定,正常向 CNC 发出 XRDY 信号。

P3: XTRF: 输出, 伺服开抱闸信号输出。

P4: XPSN: 输入,当 CNC 准停于 Z 脉冲处,或者将跟随误差消除到设定值以内时,均回答 CNC XPSN 信号。

P5: XERR: 输入, 当伺服单元因某种原因出错或无法工作时, 回馈 CNC 该信号。

P11: XREF: 伺服单元回零(亦即机床回参考点)信号也可将电机编码器的 Z 信号接到 CNC 的 XREF 端子上,由 CNC 直接检测电机的 Z 脉冲,决定机床零点,建议厂家用此方法回参考点。

6.4.6 输入/输出接口 5J2

输入/输出接口5J2是'DB15孔'插座,插头应为'DB15针'。该接口有6路继电器功率 驱动输出信号和3路输入信号。对输入信号,建议外部采用触点开关、接近开关或霍尔器件, 当输入采用接近开关(或霍尔器件)时,要求不发信号时器件的输出为高电平,发出信号时输 出为低电平, 其输出低电平的驱动能力要求大于 15mA, 建议选用电源范围 DC10~30V 的器件。

P1: 24V

P2: 24V

P3: S2

P4: M78

P5: M08

P6: -限位

P7: 地

P8: 地

P9: 24V

P10: S1

P11: M79

P12: S3

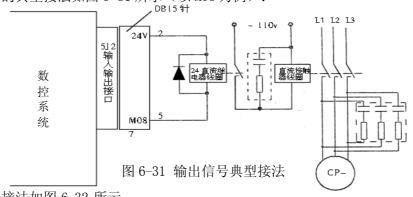
P13: H/L (主轴高低速)

P14: +限位

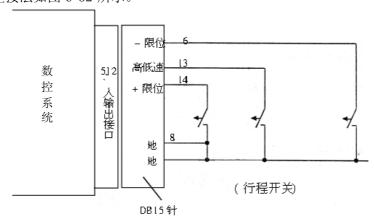
P15: 地

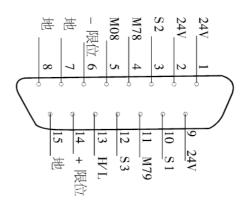
说明: S1, S2, S3, M78, M79, M08 为单功率点输出(OC门), 限制电流为 0.5A, 外接感 性负载(如直流继电器等)需加续流二极管。

S1, S2, S3: 三速电机输出


M08: 冷却输出

M78: 辅助 M 功能输出,单功率点输出(OC门)


M79: 辅助 M 功能输出,单功率点输出(0C门)


H/L: 主轴高低速输入

输出信号的典型接法如图 6-31 所示(以 MO8 为例):

输入信号典型接法如图 6-32 所示。

(a) 用机械触点开关输入信号的典型接法

用有源器件(如接近开关):

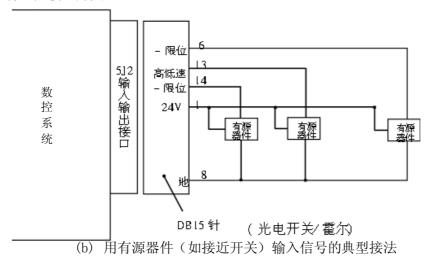
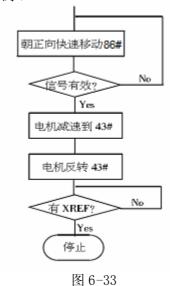



图 6-32 输入信号典型接法

回机械原点(机床零点)动作顺序:

6.4.7 主轴编码器接口 6J1

主轴编码器接口 6J1 是'DB15 孔'式插座,与之相接的插头为'DB15 针,此接口也包含一个备用的手轮接口(为兼容老系统而设计),外接手轮时建议用户使用标准的'5J3 手轮接口':

管脚	功能定义	管脚	功能定义
01	地	09	+24V
02	地	10	WHB+
03	WHB-	11	WHA+
04	WHA-	12	ENC+
05	ENC-	13	ENB+
06	ENB-	14	ENA+
07	ENA-	15	+5V
08	+5V		

仅适配满足以下条件的手轮(也叫手脉):

- 1. 工作电压: 5V 2. 每转脉冲数: 100
- 3. 输出信号: 两路差分输出,即 A+、A-和 B+、B-

仅适配满足以下条件的主轴编码器:

- 1. 工作电压: 5V 2. 每转脉冲数: 700~2400
- 3. 输出信号: 三路差分输出,即 A+、A-,B+、B-和 Z+、Z-

手轮连接必须用屏蔽线,且尽可能用双绞屏蔽线,两根双绞线接一路差分信号,可按图 7-39 制作。

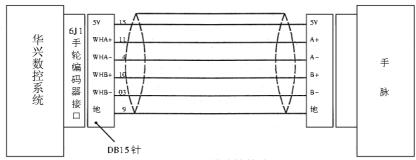
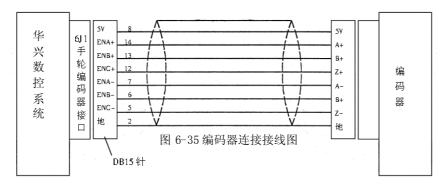



图 6-34 手轮连接接线图

当手轮旋转方向与数控系统定义的坐标相反时,应将信号 A+和 B+、信号 A-和 B-分别对调。

编码器连接必须用屏蔽线,且尽可能用双绞屏蔽线,两根双绞线接一路差分信号,可按图 7-40 制作。

说明:将屏幕层作为+5V的地线转输,不允许使用芯线传输+5V地。

6.4.8 外接手轮接口 6J2

外接手轮接口 6J2 是 'DB15 孔'式插座,与之相接的插头为 'DB15 针,定义如下:

管脚	功能定义	管脚	功能定义
01		09	Z轴
02		10	B+
03	B-	11	A+
04	A-	12	X轴
05	倍率 10	13	倍率 100
06	急停	14	
07	+5V	15	+24V
08	地		

系统支持多个手脉接入模式,可自由选择当前手脉与手脉有关的参数:

B121: =1: 支持外部输入倍率和轴选

=0: 不支持外部轴选及倍率由系统操作键盘选择

B122: =1: 由三位开关选择当前手脉

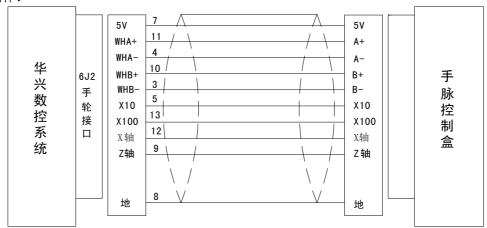
三位开关:启动: 6J1 接入的手脉 主轴停:6J2 接入的手脉控制盒 进给停:面板手脉

=0: 由 115#参数选择手脉

115#: =0: 接 6J1 接入的手脉, B115: =1: 内部面板手脉

115#=2、B121=1: 6J2 接入的手脉总成(带轴选,倍率选择)

115#=5、B121=1: 6J2 接入副面板手脉(帶轴选)

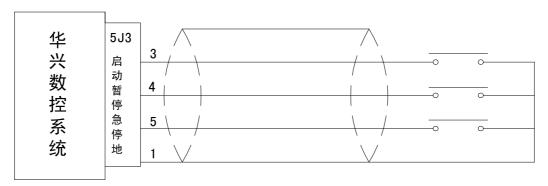

115#=5: 6J2 接入单独手脉(无轴选,倍率选择)

仅适配满足以下条件的手轮(也叫手脉):

- 1. 工作电压: 5V
- 2. 每转脉冲数: 100
- 3. 输出信号: 两路差分输出,即 A+、A-和B+、B-

说明: O20 (输出备用) 为单功率点输出(OC门),限制电流为 0.5A,外接感性负载(如直流继电器等)需加续流二极管。

手轮连接必须用屏蔽线,且尽可能用双绞屏蔽线,两根双绞线接一路差分信号,可按下图制作:



6.4.9 外接启动急停暂停接口 5J3

该接口型号为'DB9孔',与之相连的插头应为'DB9针'。定义如下:

管脚	功能定义	管脚	功能定义
01	地	06	地
02	地	07	启动
03	启动	08	暂停
04	暂停	09	急停
05	急停		

如下图所示:

6.5 典型电气应用方案

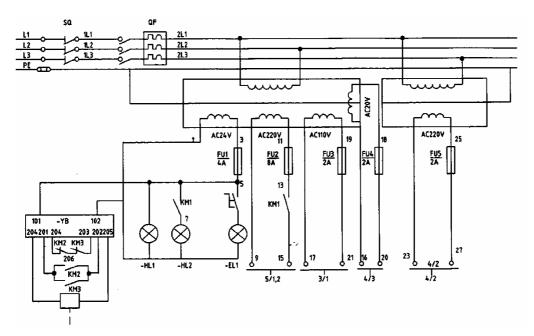


图 6-37

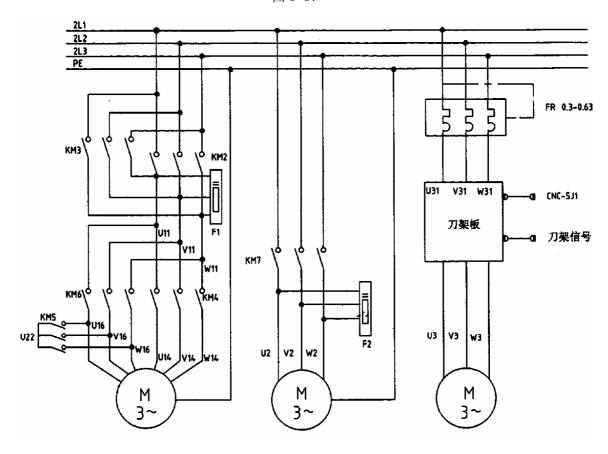


图 6-38

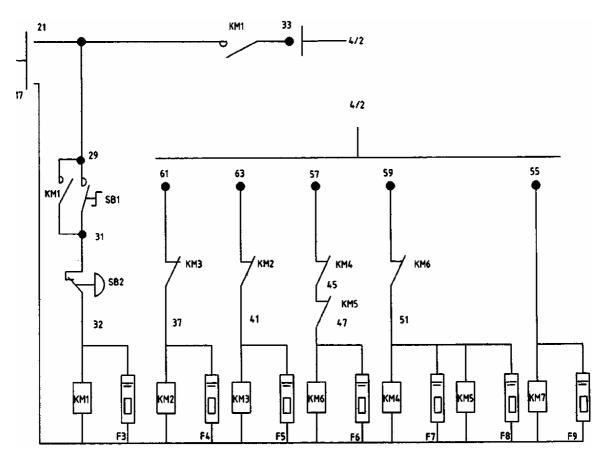
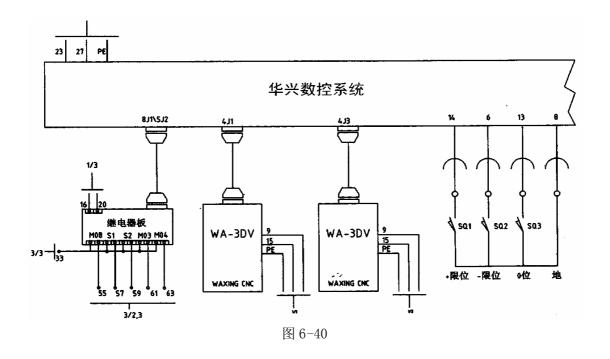



图 6-39

附录一 出错报警

出错号与错误内容提示:

- 出错号 出错内容
 - 01 G04 定义的时间错
 - 02 未定义 K 参数
 - 03 G24 子程序返回错, 转移加工与子程序调用混乱
 - 04 G31 放大后数据溢出
 - 05 未定义
 - 06 刀具号出错或开机时刀补号错
 - 07 无此 G、M 功能
 - 08 转移加工(包括子程序调用)嵌套错
 - 09 未定义
 - 10 程序行首字母错(行必须以N打头)
 - 11 未定义
 - 12 对刀计算刀补时未用 XSAV, ZSAV 记忆坐标
 - 13 数据格式错,如座标后面的数值,刀具参数表中与刀号(如 T01)对应的刀补数值,P 参数中的数值,要求小数点前四位数字,小数点后三位。
 - 14 转移加工未找到结束段号或 X U /Z W同时出现
 - 15 一行内字符太多或出现非法字符
 - 16 刀补错。
 - 17 刀补时刀补平面错
 - 18 未定义
 - 19 建立刀补时未使用 G01
 - 20 同一段程序中 M00, M02, M30 等混用
 - 21 G20调用的不是子程序, C刀补后加工园弧半径为零或负
 - 22 未定义
 - 23 螺距太大或太小或螺纹中缺 Z、K
 - 24 循环加工的目标段号错或未找到
 - 25 未定义
 - 26 转移加工不应出现在最后一行,应加上 MO2
 - 27 圆弧中缺参数或刀补坐标与补偿平面不符
 - 28 未定义
 - 29 刀补轨迹为零长度
 - 30 加工中不能操作此功能
 - 31 232 通讯时出错
 - 32 文件未找到或文件出错
 - 33 未定义
 - 34 加工数据存放空间已满
 - 35 未定义
 - 36 未定义
 - 37 未定义
 - 38 未定义
 - 39 G、M 等功能号后面的数据错

- 40 限位
- 41 驱动报警
- 42 一般报警
- 43 未定义
- 44 刀架反转时间过长、无刀位信号
- 45 文件名定义错误,或进行输入输出时通讯出错
- 46 未定义
- 47 未定义
- 48 文件内部地址错,该文件无法使用
- 49 文件显示字符错
- 50 圆弧起点与终点不符
- 51 整圆不能用 R 编程
- 52 启动加工时三位开关未处在启动位置。
- 53 任意段起动时,未找到对应段号或恒线速切削的线速度为零。
- 54 坐标轴电机准停未实现
- 55 急停报警
- 56 每转进给时进给速度为零。
- 57 未定义。
- 58 DNC 内存太小。
- 59 主轴启动错误(未收到外部主轴启动完成信号)。
- 66 开机后未返回机械零点或回零时未检测到刀号。
- 67 机械零点信号错。
- 68 未检测到主轴夹紧就绪信号
- 71 开机时键盘有键压下或启动键未弹起,可能误启动。
- 72 螺纹加速度为 0
- 73 螺纹长度太短无法加工(可提高 Z 向加速度)
- 74 、螺纹加工时主轴转速不稳/或内部数据格式错.
- 75 编码器反馈为0或螺纹加工时2向加速度太大
- 78 园弧插补出错
- 80 无此 I / 0 口
- 82 内部加工数据格式错/掉电保护数据错
- 83 非法加工功能
- 84 电子盘文件读写错
- 85 232 通讯时内存不足
- 86 电子盘读出错误
- 87 通讯时与上位机联络出错
- 88 232 通讯输入时错
- 89 同 88#
- 93 USB 口错误
- 94 伺服轴无法使能
- 95 加工中不能使用 U 盘
- 97 C刀补轨迹无交点
- 98 试用期设置错
- 99 试用期过期

附录二 系统参数

参数号	范围	出厂值	取值范围
00	G00 时间常数 (ms)	200	50~6000
01	刀架反转锁紧时间设定(秒)	0.8	0.1~10
02	机床的刀具数目(把)	4	1~10
03	主轴第1档转速上限(rpm)(变频器模拟量输出用)	3000	100~8000
04	主轴第2档转速上限(rpm)(变频器模拟量输出用)	1000	100~8000
05	=0 排刀换刀; =1 电动刀架换刀; 2-10 其他形式刀架	1	0~10
06	X 轴反向间隙(mm)	0	0~1.0
07	Z 轴反向间隙(mm)	0	0~1.0
08	X轴对刀点相对于机械零点的坐标(mm)	0	0~±99999
09	Z轴对刀点相对于机械零点的坐标(mm)	0	0~±99999
10	手动快速速度(mm/min)	5000	0~15000
11	主轴换向延时(秒)	0. 2	0~65
12	主轴制动延时(秒)	0	0~65
13	主轴启动延时(秒)	0. 5	0~65
14	M05继电器脉冲输出延时(秒)	0	0~65
15	继电器脉冲输出延时(M71~M85)(秒)	1. 0	0~65
16	螺纹 X 向旋进、旋出速度(mm/min 详见 G86 说明)	5000	0~10000
17	开机画面,0:显示版本号1:用户自定义画面2: 操作画面	0	0~2
18	X 轴对刀点相对于工件坐标的设定值(mm)	0	$0\sim\pm99999$
19	Z 轴对刀点相对于工件坐标的设定值(mm)	0	$0\sim\pm99999$
20	主轴编码器每相每转脉冲数	1200	700~4800
21	X 轴在机械零点时其工件坐标系的坐标值(适用铣床)(mm)	0	$0\sim\pm99999$
22	Y轴返回机械零点时恢复的工件坐标值(铣床或三轴车床(mm)	0	$0\sim \pm 99999$
23	主轴转速波动的百分比,低于该值时,才能加工螺纹	5	5~20
24	Y 轴对刀点相对机械零点坐标(mm)	0	0~±99999
25	螺纹加工时最后一刀光刀量,=0:不光刀(mm)	0	0~65
26	恒线速转速上限 (RPM)	1000	1~5000
27	程序编辑时自动生成段号的增量0~99, =0时,不产生段号	10	0~100
28	恒线速切削时主轴转速下限 (RPM)	100	1~5000
29	开机时液晶屏亮度值(=0时系统恢复上次关机时的亮度)	12	0~32
30	GOO 时 X 向速度 mm/min	6000	500~60000
31	GOO 时 Y 向速度 mm/min	6000	500~60000
32	GOO 时 Z 向速度 mm/min	6000	500~60000
33	X 向电子齿轮倍率	1	0~1000
34	X 向电子齿轮分率	2	0~1000
35	Y 向电子齿轮倍率	1	0~1000
36	Y 向电子齿轮分率	1	0~1000
37	Z 向电子齿轮倍率	1	0~1000
38	Z 向电子齿轮分率	1	0~1000
39	切削运动时各轴时间常数(毫秒)	100	50~1000
40	螺纹加工时 Z 轴时间常数(毫秒)	250	50~1000

用	兴 数控厂前见明节		削氷
41	切削时速度上限(mm/min)	5000	200~15000
42	G00 快速时速度下限 (mm/min)	500	500~15000
43	返回参考点时寻找零信号的低速(mm/min)	50	1~500
44	软限位各轴停下时的时间常数(毫秒)	200	50~1000
45	螺纹切削时 Z 向速度上限(mm/min)	5000	2000-15000
46	输入信号去抖动次数	12	3~30
47	电动刀架正、反转之间的延时(秒)	0. 05	0.0~10
48	间隙补偿的速度上限(时间常数同 39#) (mm/min)	2000	1000-10000
49	螺纹加工时 X 向旋进旋出尾退的时间常数(毫秒)	250	50~1000
50	Y 轴反向间隙值(mm)	0	0~1.0
51	手轮运动的各轴时间常数(毫秒)	100	100~1000
52	X 轴螺距误差补偿间隔长度(mm)	0	0~60
53	X轴螺距误差补偿点数	0	0~160
54	Y 轴螺距误差补偿间隔长度(mm)	0	0~60
55	Y轴螺距误差补偿点数	0	0~160
56	Z 轴螺距误差补偿间隔长度(mm)	0	0~60
57	Z 轴螺距误差补偿点数	0	0~160
58	圆弧插补的轮廓误差限制(mm)(一般取 0.002)	0.002	0. 001-0. 01
59	螺纹加工时 X 向旋进、退尾速度上限 (mm/min)	5000	100~15000
60	X 轴从参考点开始正向软限位坐标(mm)	0	0~99999
61	X 轴从参考点开始负向软限位坐标(mm)	0	0~-99999
62	Y 轴从参考点开始正向软限位坐标(mm)	0	0~99999
63	Y 轴从参考点开始负向软限位坐标(mm)	0	0~-99999
64	Z 轴从参考点开始正向软限位坐标(mm)	0	0~99999
65	Z 轴从参考点开始负向软限位坐标(mm)	0	0~-99999
66	X轴参考点粗定位信号的输入端子编号	27	1~40
67	Y轴参考点粗定位信号的输入端子编号	0	1~40
68	Y轴参考点粗定位信号的输入端子编号	11	1~40
69	X轴参考点精定位信号的输入端子编号	26	1~40
70	Y轴参考点精定位信号的输入端子编号	0	1~40
71	Z 轴参考点精定位信号的输入端子编号	28	1~40
72	正向限位输入端子编号	3	1~40
73	负向限位输入端子编号	4	1~40
74	外部一般性报警输入端子信号	0	1~40
75	Y 轴在机械零点时其工件坐标系的坐标值(适用铣床)(mm)	0	$0\sim\pm99999$
76	主轴高 / 低速输入端子编号	5	1~40
77	主轴第3档转速上限(rpm)(变频器模拟量输出用)	1000	100~8000
78	主轴第4档转速上限(rpm)(变频器模拟量输出用)	1000	100~8000
79	刀架正转时间上限(秒 刀架正转超时系统发出 44#报警)	8	1~8
80	位置环常数 KI (0~50)	0	
81	位置环常数 KP (60~100)	80	
82	位置环常数 KD (0~50)	0	
83	刚性攻丝时, 主轴换向延时(秒)	0	0~65
84	自定螺纹牙尖角 I, 单边切削螺纹时用(见 G86 功能)	0	

一一用办十	八致注) 阳 妮切 [7		P11 AC
85	自定螺纹牙尖角 II , 单边切削螺纹时用(见 G86 功能)	0	
86	各轴回机床零快速速度,为零时,各轴回零由 130#~133#定	6000	0~15000
87	刚性攻丝时,单位长度补偿量(微米)	0	0~15
88	螺纹 X 向切入工件时以 GO1 进刀的速度 (mm/min)	3000	1000-5000
89	进给轴准停(G09)等待时间(毫秒)	20.000	0~65
90	X轴驱动报警输入口号	16	1~40
91	Y轴驱动报警输入口号	0	1~40
92	Z 轴驱动报警输入口号	1	1~40
93	外部循环启动开关输入口号	6	1~40
94	主轴启动正常输入口号	0	1~40
95	主轴夹紧电磁阀输出口号	12	1~16
96	主轴松开电磁阀输出口号	13	1~16
97	主轴夹紧脚踏开关输入口号	10	1~40
98	主轴松开脚踏开关输入口号	12	1~40
99	伺服开高压主回路输出口号	0	1~16
100	G83 排屑延时(秒)	0	0~65
101	开伺服高压到输出伺服使能延时(秒)	0	0~65
102	三位开关循环启动位输入口号	30	1~40
103	三位开关主轴停输入口号	31	1~40
104	输出伺服使能到开伺服电机抱闸延时(秒)	0	0~65
105	主轴液压夹紧油缸通电时间(秒)	0	0~65
106	主轴液压松开油缸通电时间 (秒)	0	0~65
107	主轴液压夹紧到位信号输入口号	0	1~40
108	检测主轴液压夹紧就绪时间(秒)	0	0~65
109	定时润滑输出口号	0	1~16
110	定时润滑间隔时间(秒)	0	0~99999
111	定时润滑开启时间(秒)	0	0~3600
112	外部循环暂停开关输入口号	7	1~40
113	上电时开伺服强电上电继电器延时(秒)	0	0~65
114	Y 轴对刀点相对于工件坐标的设定值(mm)	0	0~±99999
115	手脉模式选择(详见 6.4.8 章节)	0	0~5
117	尾架进按钮输入口号	0	1~40
118	尾架退按钮输入口号	0	1~40
119	自定义外部报警数(为0时不开放)	0	0~5
120	操作加工默认显示模式	1	0~2
121	尾架进输出口号	0	1~16
122	尾架退输出口号	0	1~16
130	86#=0 时,X 轴回参考点速度	0	0~60000
131	86#=0 时,Y 轴回参考点速度	0	0~60000
132	86#=0 时,Z 轴回参考点速度	0	0~60000
133	86#=0 时,A 轴回参考点速度	0	0~60000
146	加工计件数设定,加工计件到设定值后,系统报警停止加工 为零时,无限制	0	
149	设定转速为正常,检测时间为13#	0	
<u> </u>	1	l	L

附录三 位参数

00#

B001 B002 B003 B004 B006 B007 B008

B001: =1: 半径编程 =0: 直径编程

B002: =1: 铣床加工功能 =0: 车床加工功能

B003: =1:程序运行结束时不自动插入 M05、M09(程序结尾不编 M02、M03 时有效)

=0:程序运行结束时自动插入 M05、M09

B004: =1: 在车床运行模式下,开放第三运动轴,该功能只在B001=0时有效

B006: =1: Z 轴开放电子齿轮功能 =0: Z 轴不开放电子齿轮功能 B007: =1: Y 轴开放电子齿轮功能 =0: Y 轴不开放电子齿轮功能

B008: =1: X 轴开放电子齿轮功能 =0: X 轴不开放电子齿轮功能

00# 出厂设置 00000111

01#

B011 B012 B013 B014 B016 B017 B018

B011: =1: 在操作界面上显示动态螺距误差补偿值,其值分别以 XH、YH、ZH表示。

B012: =1: M03, M04 为脉冲输出

=0: M03, M04 长信号输出

B013: =1: M05 关 S1~S4

=0: M05 不关 S1~S4

B014: =1: 攻丝结束后恢复主轴转速

=0: 攻丝结束后不恢复原主轴旋向

B016: =1: Z 轴开放螺距误差补偿功能

B017: =1: Y 轴开放螺距误差补偿功能

B018: =1: X 轴开放螺距误差补偿功能

01#出厂值为 00000000

02#

B021 B022 B024 B026 B027 B028

B021: =1: 在操作界面上动态显示反向间隙补偿情况,以 XK、YK、ZK 表示

B022: =1: 开放软限位功能

B024: =1: 软限位无须回参考点有效

=0: 软限位必须回参考点后有效

B026: =1: Z 轴开放反向间隙补偿

B027: =1: Y 轴开放反向间隙补偿

B028: =1: X 轴开放反向间隙补偿

02#出厂值为 00000111

03#

ĺ	B031	В033	B034	В036	В037	B038

B031: =1: 开机自检通过后, CNC 输出给伺服驱动器的 ENABLE 信号(各轴,触点输出) =0: 开机自检通过后, CNC 不向伺服驱动器输出 ENABLE 信号(各轴,触点输出)

B033: =0: 系统上电后必须返回参考点(机床零点)自动循环才有效

=1: 系统上电后无须返回参考点(机床零点)自动循环才有效

B034: =0: 返回机床参考点后恢复当前刀具的工件坐标(必须 REF=0 有效时)

=1: 返回机床参考点后工件坐标清零。

B036: =1: Z 轴回参考点功能开放 =0: Z 轴回参考点功能不开放

B037: =1: Y 轴回参考点功能开放 =0: Y 轴回参考点功能不开放

B038: =1: X 轴回参考点功能开放 =0. X 轴回参考点功能不开放

03#出厂值为 10110111

注:参数 4#, 5#, 6#, 7#及 28#为通用 I/O 口输入时选择有效电平,每一位的意义根据输入口号参提示或在诊断界面内查找其定义,插座位置及输入状态.

04#

B041	B042	B043	B044	B04	5	B046	B047	B048
B041:	=1:8号输	i入□(EMER)	高电平有效:	=0:	低电	已平有效		
B042:	=1:7号输	i入口(PAUS)	高电平有效;	=0:	低电	已平有效		
B043:	=1:6号输	i入口(STRT)	高电平有效;	=0:	低电	已平有效		
B044:	=1:5号输	i入口(H/L)高	高电平有效;	=0:	低电-	平有效		
B045:	=1: 4号输	i入口(LIM-)	高电平有效;	=0:	低电	已平有效		
B046:	=1:3号输	i入口(LIMT)	高电平有效:	=0:	低电	已平有效		
B047:	=1:2号输	i入口(ZPSN)	高电平有效;	=0:	低电	已平有效		
B048:	=1:1号输	i入口(ZERR)	高电平有效;	=0:	低电	已平有效		
04#出	厂值为 1000	00001						

05#

B051	B052	В053		B055	B056	B057	B058
B051:	=1: 16 号转	俞入口(XERR) 高电平有效	女; =0: 低	电平有效		
B052:	=1: 15 号轴	俞入口(XRDY) 高电平有效	女; =0: 低	电平有效		
B053:	=1: 14 号车	俞入口(XPSN) 高电平有效	女; =0: 低	电平有效		
B055:	=1: 12 号转	俞入口(IM11) 高电平有效	女; =0: 低	电平有效		
B056:	=1: 11 号轴	俞入口(ZRGH) 高电平有效	女; =0: 低	电平有效		
DOE7	-1 10 口.#		/ 宁山亚古兴	h -0 /п	出五字券		

B057: =1: 10 号输入口(IM10) 高电平有效; =0; 低电平有效

B058: =1: 9 号输入口(ZRDY)高电平有效; =0: 低电平有效

05#出厂值为 10000000

06#

B061	B062	В063	B064	B065	В066	B067	B068
B061:	=1: 24 号轴	俞入口(T02)	高电平有效	; =0: 低电	且平有效		
B062:	=1: 23 号轴	俞入口(T07)	高电平有效	; =0: 低电	且平有效		
B063:	=1: 22 号轴	俞入口(T05)	高电平有效	; =0: 低电	且平有效		
B064:	=1: 21 号轴	俞入口(T04)	高电平有效	; =0: 低电	且平有效		
B065:	=1: 20 号轴	俞入口(T01)	高电平有效	; =0: 低电	且平有效		
B066:	=1: 19 号轴	俞入口(T08)	高电平有效	; =0: 低电	3.平有效		
B067:	=1: 18 号轴	俞入口(T06)	高电平有效	; =0: 低电	且平有效		
B068:	=1: 17 号轴	俞入口(T03)	高电平有效	; =0:低电	平有效		
06#出。	厂值为 0000	00000					
07#							

_	用加十八	致加力	-51 14					M11 4/
		B072	В073		B075	В076	В077	B078
	B072:	=1: 31 号转	俞入口(3SW1) 高电平有效	女; =0: 但	氏电平有效		
	D072	-1 20 旦た	⇔ y □ (ocwo) 市山亚古兴	h -0 /1	山東古洲		

B073: =1: 30 号输入口(3SW0) 高电平有效; =0: 低电平有效 B075: =1: 28 号输入口(ZREF) 高电平有效; =0: 低电平有效 B076: =1: 27 号输入口(XRGH) 高电平有效; =0: 低电平有效

B077: =1: 26 号输入口(XREF) 高电平有效; =0: 低电平有效

07#出厂值为 00000000

08#

B081		B084	B086	B087	B088

B081: =1: 主轴 M 功能 4 档转速输出,由 M41-44 选择 4 档速度,适用于变频器加 4 档 机械档,4 档速度由 3#、4#、77#、78#参数决定。

=0:选择主轴高低速信号,适用于主轴变频器加高低速机械变换,并有高低速信号输入系统,由主轴高低档信号决定采用 P 参数的 3#或 4#作为模拟量上限。

B084: =0: 上电后等待伺服就绪后再输出伺服使能信号

=1: 上电后输出伺服使能信号再等待伺服就绪信号

B086: =1: Z 向电机运动反向 =0: Z 向电机运动正向 B087: =1: Y 向电机运动反向 =0: Y 向电机运动正向

B088: =1: X 向电机运动反向 =0: X 向电机运动正向

08#出厂值为 00000000

09#

B091	B092		B096	B097	B098

B091: =1: 开放螺纹加工的柔性处理 =0: 不开放

B092: =1: 软限位以工件坐标决定 =0: 软限位以机床坐标决定

B096: =1: CNC 上电时,向伺服输出 ENABLE 触点信号,随后检测是否收到 Z 向伺服的 READY 信号,若未收到,则在操作界上显示"驱动未就绪"错误。

=0:不检测伺服 READY 信号

B097: =1: CNC 上电时,向伺服输出 ENABLE 触点信号,随后检测是否收到 Y 向伺服的 READY 信号,若未收到,则在操作界上显示"驱动未就绪"错误。

=0:不检测伺服 READY 信号

B098: =1: CNC 上电时,向伺服输出 ENABLE 触点信号,随后检测是否收到 X 向伺服的 READY 信号,若未收到,则在操作界上显示"驱动未就绪"错误。

=0: 不检测伺服 READY 信号

09#出厂值为 00000000

10#

B101	B102				B106	B107	B108
------	------	--	--	--	------	------	------

B101: =0: 选择进给时低振动方式

=1: 选择速度高精度方式

B102: =1: 不允许用 S 功能实现 S1、S2、S3、S4 控制主轴 4 档电气变速。

=0: 允许用 S 功能实现 S1、S2、S3、S4 控制主轴 4 档电气变速。

B106: =1: Z 向以圆周表示, 0~360° =0: Z 向以长度表示

B107: =1: Y 向以圆周表示, 0~360° =0: Y 向以长度表示

B108: =1: X 向以圆周表示, 0~360° =0: X 向以长度表示

10#出厂值为 000000

11#

111						
B111	B112	B113	B114	B116	B117	B118

- B111: =1: 专机控制(功能根据专机性质定)。 =0: 通用系统控制。
- B112: =1: 急停/限位时输出(可控制报警灯,输出口5J2-P11) =0: 不输出报警信号。
- B113: =1: 主轴模拟量选择 0~5V(选件)。 =0: 主轴模拟量选择 0~10V。
- B114: =0/1:电动刀架输出口的刀架正转/刀架反转反转信号对调.
- B116: =1: Z 向回参考点时一个开关, 压下时粗定位, 释放时精定位
 - =0: Z 向返回参考点二个开关, 粗精分开
- B117: =1: Y 向回参考点时一个开关, 压下时粗定位, 释放时精定位
 - =0: Y 向返回参考点二个开关,粗精分开
- B118: =1: X 向回参考点时一个开关, 压下时粗定位, 释放时精定位
 - =0: X 向返回参考点二个开关,粗精分开

11#出厂值为 00000000

12#

B121 B12	/ I BI/3 I	B125	B126	B127	B128
----------	------------	------	------	------	------

- B121:=1:外接手脉有效,轴选及倍率由外部控制
 - =0: 采用键盘设定轴选及倍率
- B122: =0: 115#参数选择手脉
 - =1: 三位开关选择手脉
- B123: =0: 中文界面
 - =1: 英文界面
- B125: =1: 串行录入或 DNC 传输时文件以%开头
 - =0: 无%开头
- B126: =0: G97 取消恒线速加工后恢复原先的模拟量
 - =1: 不恢复
- B127: =0: 主轴模拟量输出 0~5V 或 0~10V。
 - =1: 主轴模拟量输出-10V~10V, 0~-10V 为反转, 0~10V。为正转。 (B127 为选件, 必须专门定制)

12#出厂值为 00000000

13#

D101	Ī	B131	B132	B133	B134		B136	B137	B138
------	---	------	------	------	------	--	------	------	------

- B131=0: 主轴 S 编程, 含有 M03 有效。 =1: 主轴 S 编程, 不含有 M03 有效。
- B132=0: 不开放 S4 功能(只有 S1、S2、S3) =1: 开放 S4 功能。
- B133=0: 定义 M78 为 S4 输出 (只在 B132=1 时有效)=1: 定义 M79 为 S4 输出
- B134: =0: M05 关模拟量输出。=1: M05 不关模拟量输出
- B136: =0 Z 轴正向回零 =1 Z 轴负向回零
- B137: =0: Y 轴正向回零 =1 Y 轴负向回零
- B138: =0: X 轴正向回零 =1 X 轴负向回零

13#出厂值为 10000000

14#

				D4 4 =		
B141	R142	D1/12	R144	B145	D117	R148
D141	D144	D143	D144	D140	DIAI	D140

B141:=0:外部开关量信号检测主轴启动

=1: 主轴编码器检测主轴转速为主轴启动正常

B142: =0: 外部一般报警仅作提示(错误42)

- =1:外部一般报警为严重报警使用,停止运动控制切换到手动
- B143: =1: 机床的第三轴 (Y轴) 作为主轴位置/速度模式有效时, M05 发 M29(切换到位置模式)
 - =0: 上述有效时, MO5 不发 M29 (保持速度模式)
- B144: M03, M04 指令启动主轴后检查主轴是否启动正常
 - =1: 检查主轴启动正常
 - =0: 不检查主轴启动正常

其检测时间由系统 P11 号定,超过 P11 号的时间到报 59#错

- B145: =1: 车床开放 Y 轴且 Y 轴工作在速度模式。
 - =0: Y 轴为正常进给轴。
- B147: =0: 电动刀架换刀时,结束后再确认刀号。
 - =1: 换刀完成后不再确认刀号
- B148:内部参数,必须设为0

14#出厂值 00000000

15#

B151: =0: 刀补修调值加工件坐标

=1: 刀补修调值减工件坐标

B152: =1: 系统的三位开关接入有效 =0: 无效

B154: 特种刀架的刀号效验方式(须指定 P5#=2~10 之一)

- =1: 使用相反校验。
- =0: 对特殊刀架检测刀号时使用正常奇偶效验。
- B155: =0: 开键盘蜂鸣器
 - =1: 关键盘蜂鸣器
- B156: =1: 驱动报警后撤销伺服高压继电器输出
 - =0: 不撤销
- B157:=1:驱动报警后撤销驱动使能信号
 - =0:驱动报警后不撤销驱动使能信号
- B158: =0: 采用各轴合用方向限位
 - =1: 各轴各方向限位独自分开模式(选件)

15#出厂值 11000000

16#

键盘 RESET 键为软复位时功能选项,待升级。选1为无效(软件版本 V5.1以上有效),

当按下 Reset 键时会撤消以下动作

B162 B167 B168

B162: =0: 内部保留 B167: =0: 内部保留 B168: =0: 内部保留 16#出厂值 00000000

17#: 专机类别选项:

 1 1/ -> +>++	/ · ·			
		חוד		
		B175		

=1: 偏置键作为坐标补偿

可分别选择水射流,磨床激光,火焰切割等专用功能具体请与供应商联系。

18#

B181 B182 B183 B184 B185 B186 B187 B188	B181	B182	B183	B184	B185	B186	B187	B188
---	------	------	------	------	------	------	------	------

B181: 在自动加工程序执行中,主轴启动后是否允许M10,M11 有效以满足主轴不停时连续棒料进给,该功能严格限制使用,用户必须确保安全时才能使用

=0: 不允许加工中启动主轴夹紧松开

=1:允许,但严禁未确认安全时使用

B182:=0:主轴夹紧/松开按扭开关两位长信号输入

=1: 主轴夹紧/松开按扭开关1位短信号输入

B183: =0: 非步进电机

=1: 水刀 Z 轴接步进电机

B184: =0: 主轴夹紧/松开脚踏开关为单只开关

=1: 主轴夹紧/松开脚踏开关为双联开关,一只开关夹紧,另一只为松开

B185 =0: 不开放电动卡盘

=1: 开放电动卡盘

B186, B187, B188: =0: 在回机床参考点精定位开始时,运动轴换向运动

=1: 在回机床参考点精定位开始时,运动轴不换向运动

18#出厂值 00000000

19#

B191	B192	B193	B194	B196	B197	B198

B191: =1: 主轴启动前检查主轴夹紧已完成。=0: 不检查。

B192: =0: 上电返回机械原点必须连续按手动进给键该轴才能运动;

=1: 上电返回机械原点时按下手动进给键,该轴启动后可松开按键;

B193: =0: 系统检测主轴夹紧就绪信号, 检测 P94#设定输入口

=1: 系统记忆主轴夹紧状态。

B194: =0: 定时润滑关闭; =1: 定时润滑启动。润滑间隔由 110#定,润滑时间由 111#, 输出口由 109#定。

B196, B197, B198: =0: Z轴, Y轴, X轴电机未使用抱闸

=1: Z轴, Y轴, X轴电机的抱闸功能开放

抱闸在一轴或多轴系统输出伺服使能后延时 P104#后输出抱闸释放信号,在伺服报警时,撤销全部抱闸释放信号

抱闸输出为各轴与伺服接口的 TRF 信号

19#出厂值 00000000

20#

B201	B202	B203	B204	B205	B206	B207	B208
------	------	------	------	------	------	------	------

B201: =1:主轴S1~S4 关模拟量

=0:不关

B202: =1:S1~S4 编码输出 =0:S1~S4 单点输出

编程功能	S1	S2	S3	S4	
编码输出口	S1, S3	S1, S4	S2, S3	S2, S4	B202=1
正常输出口	S1	S2	S3	S4	B202=0

B203: =1:程序运行监控主轴夹紧是否有效,一旦无效,发出严重错误报警.

=0:不检测

B204: =1:开放三节灯功能; =0:不开放(启动灯输出口5J2-P4)

B205: =1:按 CAN 键清除报警输出; =0:不关

B206: =1: 主轴夹紧/松开过程中执行后继加工程序

=0: 等待主轴功能执行完毕

B207: =1:程序运行时并行开/关主轴,主轴功能运行时继续向下执行程序

B208: =1:电动刀架换刀过程中运行后继程序.

=0: 等待换刀结束

20#出厂值 00000000

21#

B215 B216 B217 B218

B215: =1: X 手动进给键换向

B216:=1:每次循环启动清加工计时 B217:=1:开放外接按键控制各轴移动

B218: =1: 每次上电不清除计件计时; =0 清除

21#出厂值 00000000

22#

B224	B226	B227	B228
------	------	------	------

B224: =1: 取消程序段连续过渡 =0: 程序段连续过渡

B226: =1: 开放 G27 计件功能; =0: 不开放

B227: =1: 未记忆坐标,不得输入刀补;

B228: =1: 加工中修改刀补,无须暂停 =0: 暂停后修改刀补

22#出厂值 00000011

28#

B281	B383	B285	B286	P288
D201	D200	D200	D200	B288

B281: =1: 40 号输入口(XSEL)高电平有效; =0: 低电平有效

B283: =1: 38 号输入口(*100) 高电平有效; =0: 低电平有效

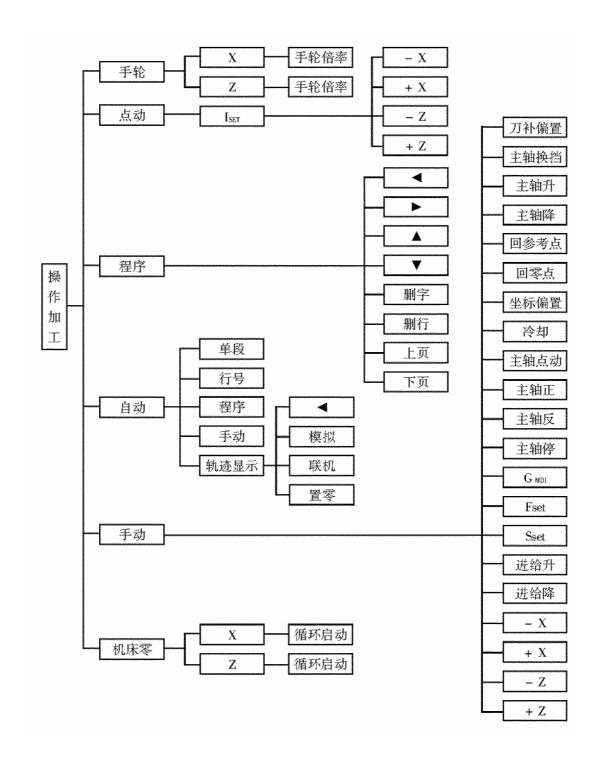
B285: =1: 36 号输入口(EXEM) 高电平有效; =0: 低电平有效

B286: =1: 35 号输入口(*10)高电平有效; =0: 低电平有效

B288: =1: 33 号输入口(ZSEL)高电平有效; =0: 低电平有效

28#出厂值 00000000

29#

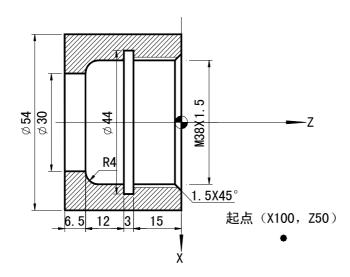

R201				
$D\Delta J I$				

B291:=1: 自定义报警时 Z 轴自动返回参考点(选件)

29#出厂值 00000000

附录四 系统介面一览

附录五 编程实例


例一. 图示如下零件

材料:黄铜,毛坯:锻件,单边余量约1mm

螺纹为公制直螺纹,螺距1.5mm

1#刀:内孔刀 2#刀:割槽刀(刀宽为槽宽 3mm) 3#刀:螺纹刀

刀具起始点为(K100, Z50)

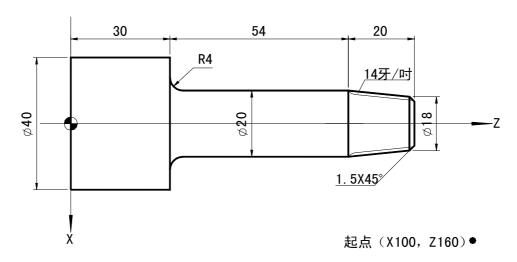
- N0010 M03 S1500
- N0020 G00 X100 Z50
- N0030 TI
- N0040 G00 X30
- N0050 G00 Z0
- N0060 G01 X55 F150 (加工端面)
- N0070 G01 X39.5
- NOO80 GO1 X36.5 Z-1.5 (倒角 1.5×45)
- N0090 G01 Z-26 (车削内孔Φ38)
- NO100 G03 X30 Z-30 R4 F100 (车削内圆弧 R4)
- NO110 G01 Z-37 (车削内孔Φ30)
- N0120 G00 X28 (X 向退刀)
- N0130 G00 Z50 (Z 向退刀)
- N0140 T2 (换内孔刀割槽)
- N0150 G00 X35 (快速进刀)
- N0160 G00 Z-18 (快速进刀)
- N0170 G01 X44 F150 (割槽)
- N0180 G00 X36 (快速退刀)
- N0190 G00 Z50 (快速退刀)
- N0200 T3 (换螺纹刀加工螺纹)
- N0210 S700
- NO220 GOO X36.5 Z2 (快速进刀)
- NO230 G86 Z—16 K1.5 I—4 R2 L4 (加工螺纹)
- N0240 G00 X100 Z80

N0250 M05

N0260 T1

N0270 G00 X100 Z250

N0280 M02


例二.图示如下零件

材料: 45#, 毛坯: 锻件, 单边余量约 1mm,

螺纹为英制锥螺纹,螺距每英寸14牙,

1#刀:外圆刀,2#刀:外螺纹刀

刀具起始点为(X100, Z160)


```
N0010 M03 S1000
```

N0020 M08

N0030 G00 X100 Z160

N0040 TI

N0050 G00 X44 Z30.2 (快速进刀)

N0060 G01 X30 F1210 (粗车端面)

N0070 G00 Z107 (快速退刀)

N0080 G00 X18.4 (快速进刀)

N0090 G01 Z104 F120 (慢速进刀)

NO100 G01 X20.4 Z84 (粗车外锥,直径余量 0.4)

N0110 G01 Z34 (粗车外圆Φ20)

NO120 GO2 X28 Z30.2 R3.8 F80 (粗车R4)

NO130 GO1 X40.2 F120 (粗车端面)

N0140 G01 Z0 (粗车外圆Φ40)

N0150 GOO Z104 (快速退刀)

N0160 S1500

N0170 G00 X24 (快速进刀)

NO180 GO1 X-0.2 F120 (精车端面)

N0190 G01 X15

NO200 G01 X18 Z102.5 (倒角 1.5×45)

NO210 GO1 X20 Z84 (精车锥度)

NO220 G01 Z34 (精车外圆Φ20)

NO230 GO2 X28 Z30 R4 F80 (精车 R4)

NO240 GO1 X40 F120 (精车端面)

NO250 G01 Z0 (精车外圆Φ40)

NO260 GOO X100 Z160 (快速退刀)

N0270 T2 (换螺纹刀加工螺纹)

N0280 S700

NO290 GOO X17.8 Z106 (快速进刀)

NO300 G87 X20 Z84 K14 I4 R1.96 L8 (车削锥度螺纹)

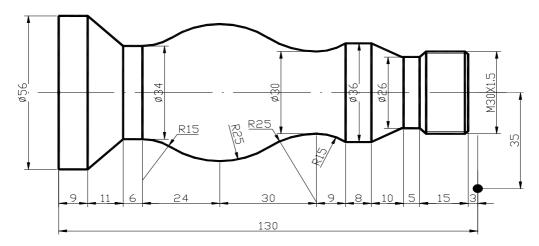
N0310 G00 X100 Z160

N0320 M05

N0330 M09

N0340 T1

N0350 G00 X100 Z160


N0360 M02

例三. 下图所示零件, 共用三把刀具

1#刀: 为90°外圆刀,2#刀:切槽刀(5mm),3#刀:60°螺纹刀

毛坯尺寸 φ60×X150, 材料: 铝。

编程如下:

N0010 G00 X70 Z130

N0020 M03 S800

N0030 G01 Z127 FS0 (慢速进刀)

N0040 X-0.5 (车端面)

N0050 G00 Z130 (快速退刀)

N0060 X56.2 (快速退刀)

N0070 G01 Z0 F80 (粗车外圆Φ56)

N0080 G00 X58 (快速退刀)

N0090 Z130 (快速退刀)

NO100 G01 X50.5 F80 (慢速进刀)

N0110 Z14 (粗车外圆)

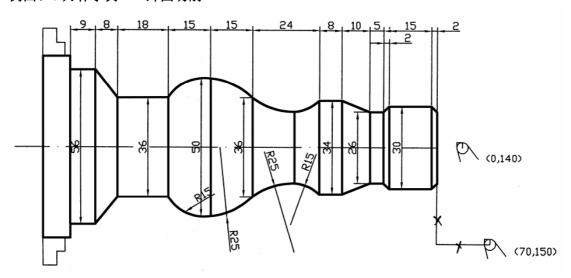
N0120 GOO X52 (快速退刀)

N0130 Z130 (快速退刀)

N0140 G01 X44 F80 (慢速进刀)

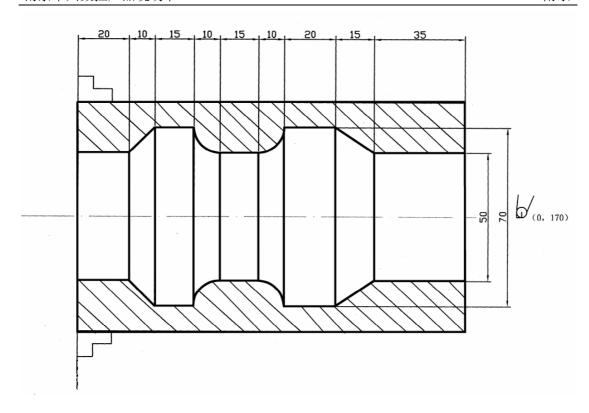
N0150 Z70 (粗车外圆)

N0160 G00 X46 (快速退刀)


N0170 Z130 (快速退刀)

N0180 G01 X40 F80 (慢速进刀)

- N0190 Z70 (粗车外圆)
- N0200 G00 X42 (快速退刀)
- N0210 Z130 (快速退刀)
- NO220 G01 X36.2 F80 (慢速进刀)
- N0230 Z75 (粗车外圆)
- NO240 GOO X38 (快速退刀)
- N020 Z130 (快速退刀)
- NO260 GO1 X28.5 F80 (慢速进刀)
- NO270 X30.5 Z125 (倒角)
- N0280 Z104 (粗车外圆)
- N0290 G00 X90 (快速退刀)
- N0300 Z200 (快速退刀)
- N0310 T2
- N0320 M03 S400
- N0330 G00 Z107 (快速进刀)
- N0340 X32 (快速进刀)
- N0350 G01 X26.2 F20
- N0360 G00 X52 (快速退刀)
- N0370 Z20 (快速退刀)
- N0380 G01 X34.2 F20 (粗车外圆)
- NO390 CO1 X52 FSO (慢速退刀)
- NO400 G00 Z200 (快速退刀)
- N0410 T3 S1200
- N0420 G00 X32 Z127
- NO430 GO1 X30 FSO (慢速进刀)
- N0440 Z114 (精车螺纹外圆Φ30)
- NO450 X26 Z112 (倒角)
- N0460 Z107 (精车外圆Φ26)
- N0470 X36 Z97 (精车锥度)
- N0480 Z89 (精车外圆Φ36)
- N0490 X54 Z80 (粗车外圆)
- N0500 X38 Z26 (粗车外圆)
- N0510 Z20 (粗车外圆)
- N0520 X58 Z9
- N0530 G00 Z97 (快速退刀)
- N0540 G01 X36 F80 (慢速进刀)
- N0550 Z89 (慢速进刀)
- NO560 GO2 X30 Z80 R15 (精车顺圆弧 R15)
- NO570 GO2 X40 Z65 R25 (精车顺圆弧 R25)
- NO580 GO3 X40 Z35 R25 (精车逆圆弧 R25)
- NO590 GO2 X34 Z26 R15 (精车顺圆弧 R15)
- N0600 G01 Z20 (精车外圆Φ34)
- N0610 X56 Z9 (精车锥度)
- N0620 Z0 (精车外圆Φ56)
- N0630 S400
- N0640 G00 X58 (快速退刀)


```
N0650 Z132 (快速退刀)
N0660 X30 (快速进刀)
N0670 G86 Z110 K1.5 I4 R1.35 L8 (车削螺纹)
N0680 G00 X70 (快速退刀)
N0690 Z200 (快速退刀)
N0700 T1
N0710 M02
```

例四: C 刀补示例——外园切削


```
-T01 DX=0, DZ=0, R=1, PH=3
刀具参数:
    N0010 T1
    N0020 G0 X70 Z150
    N0030 G0 X0 Z140
    N0040 G42 G01 X26 Z131 F200
    N0050 G1 X30 Z129 F120
    N0060 G1 Z114
    N0070 G1 X26 Z112
    N0080 G1 Z107
    N0090 G1 X34 Z97
    N0100 G1 Z89
    N0110 G02 X26 Z80 R15
    N0120 G02 X36 Z65
                       R25
    N0130 G03 X50 Z50 R25
    N0140 G03 X56 Z35 R15
    N0150 G1 Z17
    N0160 G1 X56 Z9
    N0170 G1 Z0
    N0180 G40 G01 X60 Z10
    N0190 G0 X70 Z150
    N0200 M2
```

例五: C 刀补示例——内孔切削

刀具参数: -T01 DX=0, DZ=0, R=2, PH=2 N0010 T1 N0020 G0 X150 Z200 N0030 G0 X0 Z170 N0040 G41 G01 X50 Z150 F1000 N0050 G1 Z115 F100 N0060 G1 X70 Z100 N0070 G1 Z80 N0080 G02 X50 Z70 R10 N0090 G1 Z55 N0100 G02 X70 Z45 R10 N0110 G1 Z30 N0120 G1 X50 Z20 N0130 G1 Z0 N0140 G40 G01 X45 Z10 N0150 G0 Z200 N0160 X150 N0170 M2

南京华兴数控技术有限公司

地址:南京江宁经济技术开发区东善桥工业集中区

电话: (025) 87170996 87170997 87170998

 $(025)\ 52627631\ 52627981\ 52614636$

传真: (025) 52627632

网址: Http://www.wxcnc.com

Email:njwxcnc@163.com