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Abstract

The liposome- vesicles made by a double phospholipidic layers which may encapsulate aqueous solutions- have been
introduced as drug delivery vehicles due to their structural flexibility in size, composition and bilayer fluidity as well
as their ability to incorporate a large variety of both hydrophilic and hydrophobic compounds. With time the lipo-
some formulations have been perfected so as to serve certain purposes and this lead to the design of “intelligent” lipo-
somes which can stand specifically induced modifications of the bilayers or can be surfaced with different ligands
that guide them to the specific target sites. We present here a brief overview of the current strategies in the design of
liposomes as drug delivery carriers and the medical applications of liposomes in humans. 
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Introduction

Beginning with 1965, the liposome-vesicles formed
by the self-assembly bilayers of phospholipid
molecules in an aqueous environment- have consti-
tuted an experimental tool in a large number of labo-
ratories throughout the world. The liposomes may be
constructed so as to accommodate a large variety of
both hydrophilic and hydrophobic agents and to pro-
tect the encapsulated agents from cellular metabolic
processes. In addition, the lipid composition of the
bilayers can be modified in order to obtain other
desirable properties. Therefore, the attention was
focused on using liposomes as delivery systems. For
a successful therapy with liposome-incorporated
drugs, they should be able to reach the accurate target
site at the right time, correct concentration and at the
proper rate. In pharmaceutical industry beside the
synthesis and isolation of new potent compounds, a
new approach is to develop efficient delivery vehicles
for available drugs. The specific aim is either to mod-
ify the drug biodistribution within the body, or to
improve the therapeutic efficiency. Starting with their
discovery 40 years ago, the liposomes seemed to be
attractive candidates as a drug delivery system.
Liposomes resemble cell membrane in structure and
composition. They are made of natural, biodegrad-
able, nontoxic and nonimmunogenic lipid molecules
and can encapsulate a large variety of both

hydrophilic and hydrophobic compounds. Their uti-
lization is based on their properties (dimensions,
lamellarity, loading efficiency, surface properties, sta-
bility, which can be manipulated during the prepara-
tion process) as well as their biological interactions
with the cells. The encapsulation or the association of
drugs with liposomes alters drug pharmacokinetics,
and this may be exploited to achieve targeted thera-
pies. Coupling of different ligands on the liposome
surface may be used to obtain a specific liposomal
drug targeting. Thus, according to the purpose, the
appropriate composition and preparation method
should be employed in order to obtain a specific lipo-
somal system.

Liposomes as drug-delivery vehicles

Subsequent to the first description of liposomes in the
middle of 1960s (by AD Bangham) the use of lipo-
somes as vehicles for selective delivery of drugs to
specific tissues has received considerable attentions.
By virtue of their biodegradable and nontoxic nature,
liposomes can be safely administered without severe
side-effects. The first results were rather disappoint-
ing because the first generation of liposomes, referred
to as conventional liposomes (C-liposomes) were
unstable in biological fluids and inefficient in drug
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Fig. 1   Schematic diagram indicating the fate of intravenously (i.v.) administrated conventional liposomes. Upon interac-
tion with the plasma proteins, liposomes may be covered with opsonins  which mediate their endocytosis by Kupffer cells
(KC) in the liver sinusoidal endothelia (E). Alternatively, an exchange of liposome lipids with lipoproteins, especially HDL
can take place; the latter process leads to liposome destabilization and release of encapsulated molecules in the plasma.



loading. For drug delivery, liposomes can be admin-
istrated topically or parenterally. After systemic (usu-
ally intravenous) administration, which seems to be
the most promising route for this carrier system, C-
liposomes are recognized as foreign particles and are
taken up by the cells of the mononuclear phagocytic
system (MPS), mostly Kupffer cells in the liver and
macrophages of the spleen. In addition, C-liposomes
are highly unstable in biological fluids, leading to a
rapid release of encapsulated molecules mainly due to
the interactions with two distinct groups of plasma
proteins, HDL and opsonins adsorbed onto liposome
surface and mediating their endocytosis by MPS (Fig.
1). Therefore, the rate of liposome clearance from
blood circulation depends on the ability of opsonins
to bind to the liposome surface; nonetheless this can
be manipulated through the appropriate selection of
liposome characteristics. In addition, the clearance of
liposomes from blood stream depends on the lipo-
some properties such as bilayer fluidity, surface
charge and vesicle size. The pronounced tendency of
C-liposomes to be taken up, that is to target cells of
MPS is very useful for delivering drugs to
macrophages but restrain the in vivo use of liposomes
for selective delivery of drugs to other sites. Thus, the
C-liposome uptake by MPS cells has limited the
development of liposomes as drug delivery systems
for over 20 years. 

After numerous and various studies, new formula-
tions of liposomes with increased stability were
designed; thus, liposomes that contain lipidic deriva-
tives of polyethylene-glycol (PEG) which possess the
properties to avoid MPS uptake and show increased
times in blood circulation were found particularly
appropriate [1]. Also, “smart” liposomes that can tol-
erate specifically induced modifications of the bilay-
ers or can be covered with different molecules were
constructed. These sort of liposomes include proteoli-
posomes containing fusogenic proteins [2,3], pH-sen-
sitive liposomes (able to avoid lysosomal degradation
[4-6]), cationic liposomes (form complexes with
DNA [7-9]), target sensitive liposomes (disintegrate
after binding to a target cell and release the content in
the cell vicinity [10]) and immunoliposomes (direct-
ed toward specific sites by coupling antibodies to
their surface [11,12]). At present, researchers in the
liposome field are trying to reach the concept of
“magic bullet” introduced by Paul Ehrich in 1906.
Thus, “smart” liposomes capable to deliver specifi-
cally drugs or genes to a certain cell or tissue have

been designed; still, it remains to be validated by in
vivo and clinical studies.

Designing of “intelligent” liposomes

It is expected that liposomes can be widely used as
drug delivery systems due to their structural versatil-
ity related to size, composition, bilayer fluidity and
ability to incorporate a large variety of compounds.
However, in order to use effectively liposomes as
drug delivery vehicles in the treatment of a wide
range of diseases involving cells other than MPS,
“intelligent” liposomes which stay longer in the cir-
culation, or can stand specifically induced modifica-
tions of the bilayers or can be covered with specific
molecules (targeted liposomes) have been designed
and prepared.

Long-circulating liposomes

As mentioned above, the rapid uptake of liposomes
composed of natural phospholipids, referred as con-
ventional liposomes (C-liposomes) by the MPS has
limited their use for targeting other cells. As a result,
the development of liposomes as drug delivery vehi-
cles relied on attempts to construct vesicles that avoid
the MPS, such as small, rigid, cholesterol-rich lipo-
somes that exhibited increased stability in plasma
[13]. Other methods of extending the liposome blood
circulation time include the incorporation into lipo-
somes of polyvinyl-pyrrolidone polyacrylamide
lipids [14], glucoronic acid lipids [15] or the high
phase transition temperature phospholipid distearoyl
phosphatidylcholine [16]. Also, coating of liposomes
with proteins, polysaccharides and glycolipids of red
blood cells confer the ability to increase their circula-
tion time [17]. Some success has been achieved using
liposomes coated with ganglioside GM1 and hydro-
genated phosphatidyl inositol (HPI) considered as the
component responsible for their increased circulation
time and referred to as StealthR liposome [18].
Unfortunately, the effect of GM1 on the increasing cir-
culation time occurs only in the mouse model and not
in rat or rabbit models because the serum of the latter
contains anti-GM1 antibodies which enhance rapid
clearance of GM1 containing liposomes [19]. A better
formulation which displays a longer circulation time
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in the blood stream is that containing a relatively
inexpensive and easily prepared phospholipid conju-
gated with a synthetic hydrophilic polymer, polyethy-
lene glycol, PEG [1]. These liposomes, referred to as
sterically stabilized liposomes (SS-liposomes) have
been found to have the best capabilities to reduce
MPS uptake. The PEG polymers are believed to ster-
ically hinder the interaction of serum proteins with
the liposome surface by virtue of their hydrophobici-
ty and flexibility, resulting in a reduced uptake of
liposomes by the cells of MPS [20]. This last finding
restored much of the original promise of liposomes as
“magic bullet” that can deliver selectively drugs to
specific sites. 

Targeted liposomes 

The most promising way for selective targeting of
liposomes to specific sites is the attachment on their
surface of ligands, which recognize specific
molecules. Antibodies or other ligands such as folate
[21], transferrin [22] anionized albumin [23], dextran
[24] which bind to receptors that are upregulated on
the surface of a target cell, can be attached onto the
liposome surface using various anchors or to the ter-
minus PEG, which is inserted into the liposome bilay-
er by a phospholipidic derivative [25-29] (Fig. 2). 

Immunoliposomes, that are liposomes bearing on
the surface covalently coupled antibodies, have been
designed so as to secure a targeted delivery of drugs

to specific surface antigens. Promising results were
obtained in vitro [26,27,30] and in vivo on animal
models [31-33] and despite of the use of humanized
antibodies for cancer treatment [34] they have not
been widely introduced in clinic, yet. Also, numerous
molecules have been identified on the surface of cells
in pathological conditions; thus the immunolipo-
somes are a promising tool as diagnostic or therapeu-
tically agents. However, the specific binding of lipo-
somes to a target cell (mediated by an antibody direct-
ed against a certain molecule on the cell’s surface)
does not lead always to an efficient drug delivery.
Targeting antigens that are internalized by the cells
could mediate an efficient intracellular drug delivery.
Therefore, the strategy in constructing immunolipo-
somes should be optimized so as that internalization
and intracellular drug delivery will take place (Fig. 3).
Thus, targeting of the liposomes to receptors that are
known to be internalized is the most attractive
approach in future research because this would allow
the intracellular delivery of the liposome content and
increases the therapeutic benefit. The efficient deliv-
ery associated with the receptor-mediated endocyto-
sis, or surface antigens - where liposomes are trans-
ferred to endosomal-lysosomal compartment may be
useful only for drugs that effectively resist degrada-
tion into these compartments.

“Sensitive” liposomes : pH-, temperature-,
target- sensitive liposomes

To avoid lysosomal degradation, pH-sensitive lipo-
somes, which destabilize and become fusogenic at a
pH ~ 6, have been designed. This type of liposomes
are composed by a mixture of phosphatidyl
ethanolamine (PE) with an acidic phospholipid. At
pH< 6.5, after protonation of the bilayers, PE under-
go a transition from the bilayer phase to a hexagonal
phase, destabilize, becomes fusogenic and the liposo-
mal content reaches the citosol (figure 3). The pH-
sensitive liposomes have been successfully used for
nucleic acids delivery [35,36].

Another distinct type of liposomes is the tempera-
ture-sensitive liposomes that are prepared from phos-
pholipids with a phase transition temperature of
around 40ºC. Heating the sites where the liposomes
have been accumulated is assumed to induce a rapid
release of the liposomal content (figure 3). This class
of liposomes have been successfully used in vitro and
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Fig. 2   Classes of immunoliposomes: type A: an antibody
is coupled to an anchor inserted into the bilayer of conven-
tional liposome; type B: an antibody is coupled to an anchor
inserted into the bilayer of sterically stabilized liposome;
type C: an antibody is coupled to the distal end of the
polyethylene glycol (PEG) grafted to the liposome surface.



in animal models [37] but have not been introduced in
the clinic although the local hyperthermia is used as
an anti-cancer treatment and temperatures over 40ºC
are easily achieved in various tissues. 

Target-sensitive liposomes have been obtained by
stabilization of PE into bilayer with antibodies deriva-
tives of fatty acids (usually palmitic acid). After bind-
ing to target cell’s surface, concentration of immuno-
globulins molecules at contact points, leads to desta-
bilization of bilayers [10] (Fig. 3). At this site, the
liposomal content will be released in the cell’s vicin-
ity. This technique has been used for delivery of
antiviral agents [38]. 

Liposomes in human therapy

Despite of the good and encouraging results obtained
using liposomes as vehicles for drugs in numerous
diseased animal models, in human therapy, the use of
liposomes is restricted to systemic fungal infections
and cancer therapy, only. However, liposomes based

vaccines show great promise and a vaccine against
hepatitis A is already on the market. 

Liposomes in anticancer therapy

Based on the early studies that showed that encapsu-
lation of a drug inside of liposomes reduces its toxic
side effects, the liposomes were considered as attrac-
tive candidates for the delivery of anticancer agents.
However, their use was hampered by the rapid uptake
of conventional liposomes by MPS cells. The
increase of in vivo circulation time of modified lipids
(PEG polymerized lipids, gangliosides, shingomyelin
etc.) restored the initial expectation of the advantages
of liposomes. Intravenously administered stealth lipo-
somes were passive targeted to solid tumors due to
their extravasation in leaky blood vessels supporting
the tumor [39].

The good results obtained with liposomal-encap-
sulated doxorubicin and daunorubicin have lead to
two products licensed for use in the treatment of
Kaposi’ sarcoma, namely Doxil and Daunoxome
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Fig. 3   Type of interactions between ligand-targeted liposomes with a cell. Upon binding to the cell surface, ligand-
targeted liposomes can be either internalized by receptor mediated endocytosis, or can fuse with the cell membrane
(fusogenic liposomes obtained by insertion of fusogenic viral proteins). For an effective drug delivery, temperature-
and target-sensitive liposomes have been designed: the liposomes disintegrate and release in the vicinity of the cell
their content, part of which permeate the plasma membrane. In addition, pH-sensitive liposomes are constructed so
as to fuse with endosomes and release the content in citosol avoiding lysosomal degradation.



[40]. Doxil (commercialized by Sequus Pharmaceu-
ticals, Menlo Park, USA) is a suspension of doxoru-
bicin precipitated in 80-100 nm sterically stabilized
liposomes. Daunoxome (commercialized by NeXstar
Pharmaceuticals, Inc., Boulder, USA) is a small, rigid
formulation of liposomes with daunorubicin. These
liposomes circulate in the vasculature of patients for
several days, and thus have increased chances of
extravasating at sites of increased permeability.

Other approaches employed in liposomal anti-
cancer therapy include the use of immunoliposomes
[41,42] and termosensitive liposomes [43,44].
Although the use of immunoliposomes is an elegant
strategy [45,46], their efficiency in anticancer drug
delivery to solid tumors is not increased when com-
paring with stealth liposomes. This may be due to a
high binding of immunoliposomes to the periphery
of solid tumors that prevent their penetration into
deeper layers [47]. The success achieved with
anthracycline anticancer agents led to the develop-
ment of other liposomal formulations that are in pre-
clinical stages (5-fluorouracil lipid analogue [48],
vincristine [49-51], a porphyrin derivative for use in
combination with laser light irradiation [52],
bleomycin [53], mitozantrone [54], paclitaxel [55],
valinomycin in combination with cisplatin [56]) or
clinical trials (muramyl tripeptide phos-
phatidylethanolamine, MTP-PE studies in USA and
Europe sponsored by Ciba-Geiby, 6-aminochrysene
studies in Belgium sponsored by Jules Bordet
Institute, platinum studies in USA sponsored by The
Liposome Company and MD Anderson Hospital
[40] and cytarabine [57] ). 

Liposomes in infections treatment

Due to their uptake by the cells of the MPS, mainly
Kupffer cells and spleen macrophages, conventional
liposomes are useful in the treatment of parasitic
infections of the MPS, such as leishmaniasis.
Encapsulating the amphotericin B into liposomes
reduces the renal and general toxicity, and the thera-
peutic efficiency is improved. Ambisome is a formu-
lation of small, negatively charged liposomes with
amphotericin B licensed for clinical use and commer-
cialized by NeXstar, Pharmaceuticals Inc., Boulder,
USA [40]. Now, the attention is focused on the encap-
sulation of more powerful antibiotics (that are
exceedingly toxic in free form) and on the develop-

ment of liposomal formulations for delivering the
drugs to other sites than MPS. The encapsulation of
the anti-tuberculosis drug rifampicin or isoniazid in
liposomes targeted to lung improves the efficacy of
the drug [58] and modulates toxicity [59] in mice.
Also, good results in the treatment of infections in
mice were obtained by incorporating immunomodu-
lators (i.e. cytokines) in liposomes  [60]. 

Liposomes as vaccine systems

Liposomes can be used as enhancers of the immuno-
logical response by incorporation of antigens [61],
cytokines [62] or DNA sequences encoding an anti-
genic protein [63,64]. For this purpose the liposomes
are administered intramusculary, a location where the
encapsulated antigen is released slowly and accumu-
late passively within regional lymph nodes. To con-
trol the antigen release and to improve the antibody
response, the liposomes encapsulating antigens are
subsequently encapsulated into alginate lysine micro-
capsules [65]. At present, Epaxal, a liposome-based
vaccine against hepatitis A was licensed for clinical
use and was introduced on the market by Swiss
Serum and Vaccine Institute, Bern, Switzerland [61].
This vaccine contains formalin inactivated hepatitis A
virus particles attached to phospholipid vesicles
together with influenza virus haemagglutinin.
Hepatitis A virus incorporated into liposomes proved
to be a suitable formulation in term of rapid serocon-
version, high level of mean antibody content and low
reactogenicity [66]. 

Also, there are in clinical trial vaccines against
influenza, hepatitis B, diphteria, tetanus, E Coli infec-
tion [40].

Liposomes in gene delivery

Gene therapy is the process by which DNA
sequences encoding specific altered genes are deliv-
ered to cells with the goal of treating or curing genet-
ic diseases. Thus, instead of treating the symptoms of
the disease, as in conventional medicines, gene ther-
apy has the potential to correct the underlying cause
of genetic diseases. While the idea of gene therapy is
a simple concept, the delivery of genes to the dis-
eased areas turned out to be a difficult task. The prob-
lems associated with the use of viral vectors for gene
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therapy, lead to the search for less-hazardous, non-
viral delivery systems. As an alternative to viral vec-
tors, cationic liposomes have been developed for
gene transfer since they have no limit for the size of
the genes to be delivered and exhibit low immuno-
genicity. The efficacy of this system has been limited
by the non-specific adherence to many cell types. In
order to obtain an effective DNA transfer it is neces-
sary to administer liposomes to a site near to the tar-
get area. The use of ligand-targeted liposomes will
make possible to direct them precisely to diseased
cells and not to other cells. Some pharmaceutical
companies (Vical Company, San Diego, USA,
Targeted Genetics Corporation, Seattle, USA,
ValentisR Burlingame, USA) are engaged in lipo-
some-based gene delivery and have products in clin-
ical trials. Vical Company (San Diego, USA) has two
compounds on trial that are based on liposomes for
gene delivery: (i) Allovectin-7: liposomes carrying a
gene for HLA-B7 (a highly immunogenic molecule)
that are injected into tumors: this is in phase III trial
for metastatic melanoma and phase II trial for
patients with head and neck squamous cell carcino-
ma and (ii) Leuvectin, a DNA/lipid complex con-
taining gene for IL-2, a immunostimulatory cytokine,
that is in phase II trial for patients with prostate can-
cer. ValentisR Company (Burlingame, USA) has a
liposome-based system in phase I trial for gene ther-
apy with Del-1 (Developmentally Regulated
Endothelial Locus-1, an extracellular matrix protein
involved in the early growth and development of
blood vessels and bone) for the treatment of periph-
eral arterial disease and ischemic heart disease. 

A cationic liposome /E1A complex (a gene from
common cold virus that acts as tumor inhibitor) that
is injected intratumoral, is under investigation by
Targeted Genetics Corporation (Seattle, USA); the
liposome complex is in phase II study in the treatment
of patients with recurrent head and neck squamous
cell carcinoma [67] and in phase I in ovarian cancer
in combination with paclitaxel (Taxol) and cisplatin
chemotherapy [68]. Intratumoral injections of lipo-
some/E1A complex were safe and well tolerated. The
E1A gene expression was accompanied by HER-
2/neu downregulation, increased apoptosis, and
reduced proliferation.

Also in clinical trials, the UK CF Gene Therapy
Consortium (London, United Kingdom) employs the
complexes liposome/gene CFTR (cystic fibrosis
transmembrane conductance regulator) that is deliv-

ered as an aerosol to the nose and lung of patients
with cystic fibrosis [69-71].

Conclusions and perspectives

Liposomes are one of the most broadly studied mod-
ern drug delivery system. To overcome some difficul-
ties with respect to the liposome stability and the
MPS uptake, some “intelligent” liposomal systems
able to deliver specifically and efficiently drugs or
genes to appropriate tissues or cells have been devel-
oped. The next step is to validate the results obtained
in vitro and on animal models by clinical trials. While
effective anticancer and antifungic formulations have
been completed after years of persistent research,
progress in the field of gene delivery are anticipated
to be the next largely developing area in molecular
medicine. Thus, the designing of fusogenic peptides
that mimic functions of SNARE proteins or fusogenic
viral proteins will allow the development of lipo-
somes that can deliver drugs and genes with high effi-
ciency at the specific intracellular destination. The
incorporation of translocation nuclear domains into
modular fusion proteins provides new perspective in
gene delivery. Also, the covering of liposomes with
certain oligosaccharide sequences found on the sur-
face of long-time circulating cells (such as erythro-
cytes) may increase the capacity of liposomes to cir-
culate for days or weeks with minimal interactions
outside the targeted tissue. Furthermore, the efficien-
cy of liposome complexes will be improved due to
the current progress in developing of new functional-
ized lipids to be used as anchors for attachment of
proteins, peptides or drugs to the liposome surface. 
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