1 2 3	4 5		6		7	8	II.	9	
						REV. ECN.NO.	MODIFY.CONTEN	T D/	ATE
D 9.47						A0	NEW	2018,	/12/23
						A3 TX1- Sa A4 Veus Fi A5 CC1 Sa A6 D+ Sa A7 D- Sa	quence No Nam	al Matiu e Seque First Second Second First	A ng nce j j j j b j b b b b b b b b b b b b b
\$9.35 ↓0.10 \$9.85-0.05\$® ● @	® 8.65				-	10 RX2- So 11 RX2+ So 12 GND FI	rst B4 VBUS boond B3 TX2- boond B2 TX2+ rst B1 GND	First Second Second First	
© 000000000000000000000000000000000000	€ 2X1.30±0.05	◎ @ @ @ 9 9 9 9 9 9 9 9 9 9 9 9 9	<u>).10</u>		€	SHELL G	ID SHELL	GND	c
9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 6 8 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5		NOTES: 1.MATERIAL :SEE TABLE 2.COPLANARITY : 0.10 3.ELECTRICAL CHARACTE LOW LEVEL CONTACT INSULATION RESISTANC DIELECTRIC WITHSTANE CONTACT CURRENT RA 4.MECHANICAL CHARACT INSERTION FORCE: 5~ EXTRACTION FORCE: 8 AFTER DURABILITY EXT 5.DURABILITY: 10000 C' 6.PACKAGING TYPE: CAF 7.MATERIAL SHOULD BE AND CUSTOMER REQUI ALSO NEED TO MEET	RISTICS RESISTANCE: E:100MΩ MI ING VOLTAGE FING:5A Max ERISTICS 20N ~20N RACTION FOR CLES RIER TAPE. FULFILLED A REMENTS,FOR	N :100 VAC: CE: 6~20N MPHENOL SPEC # S		F
		GENERAL TO				APPD:		Scale	1:1
			x.°±5°	Ding NO.	JYSA1809-002		-		mm
			.x°±2°	Title	USB TYPE C CONNECT TOP MOUNT(WATERPRO	OR CHKD: OF) DR:			
				Part NO.	JYS-USB890-04		2018/12/23	-@	╘══╧┤║
		.XXX±0.15	.xxx*±0.5*		_IUSCONN ^S	henzhen		C ~ ¹	
		SHEET 1/2			J.	SCONN	Electronics	ι σ., Ι	

	REV. ECN.NO. MODIFY.CONTENT DATE
	A0 NEW 2018/12/23
	2.25 2.25
20pcs empty800pcs products20pcs Empty	
	$\begin{array}{c} 420 \\ 420 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ $
	₹ ₹ 4x0.45 - 1.00 ↓ 1.00 100
	_ 3.00 3.00 _
	2X8.90
	RECOMMENDED PCB LAYOUT
	(Tolerance=±0.05)
customer unwinding direction	
	8 LIM 1 CHN-LIMS-60-A/B BLACK
	7 SMALL SHELL 1 SUS304-1/2H NICKEL: 50U" MIN
PACK DIRECTION	6 MAIN SHELL 1 SUS304-1/2H CLEAN 5 SUB-SHELL 1 SUS304-1/2H SOLDER NICKEL: 50U" MIN
	4 TOP TERMINAL 1 NKE012-EH MATING SIDE:AUGUMINI INCLUDING SIDE AND BOTTOM SIDE:
	AU3U"MIN; SOLDER TAIL:AU3~8U", 80–150U" NICKEL OVERALL.
	3 BOTTOM TERMINAL 1 NKE012-EH MATING SIDE:Au30u"MIN; INCLUDING SIDE AND BOTTOM SIDE: Au30"MIN; SOLDER TAIL:Au3~8u", 80-150u" NICKEL OVERALL.
	2 MID PLATE 1 SUS301-H SOLDER NICKEL: 50U" MIN
	1 MAIN HOUSING 1 PA46 HFX31S BLACK ITEM DESCRIPTION Q'TY MATERIAL FINISH
	BILL OF MATERIAL
	GENERAL TOLERANCE DWG NO. JYSA1809-002 APPD: Scale 1:1
	Title TOP MOUNT(WATERPROOF)
	.XX±0.25 .xx*±1* Part NO. JYS-USB890-048 Date 2018/12/23
	XXX±0.15 .xxx [±] ±0.5 [•] JUSCOND Shenzhen
	SHEET 2/2 JYSCONN Electronics Co., LTD.

PRODUCT SPECIFICATION

Title:	USB Type c Receptacle Product Specification	
Part Number:	JYS-USB890-048	
Description:	Waterproof IPX8(低温制程)	

Revisions Control

Rev.	ECN Number	Modification Record	Originator	Issue Date
А	PS1812005	Initial Release	Fei. Wu	2018/12/26

Product Specification Origination

Originator:	Date:	Checked By:	Date:	Approved By:	Date:

1. SCOPE

This specification defines the performance for the USB type-c products.

2. APPLICABLE DOCUMENTS

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

2.1 COMMERCIAL STANDARDS AND SPECIFICATION

EIA-364 ELECTRICAL CONNECTOR/SOCKET TEST PROCEDURES INCLUDING ENVIRONMENTAL CLASSIFICATIONS

- IEC INTERNATIONAL ELECTRO-TECHNICAL COMMISSION
- MIL AMERICAN MILITARY STANDARD

3. REQUIREMENTS

3.1 DESIGN AND CONSTRUCTION

Product shall be of the design, construction and physical dimensions specified on the applicable product drawing.

Solder components shall meet Lead-Free soldering requirements and the connectors shall be RoHS & Halogen Free Compliant.

3.2 MATERIALS

- A. Housing: PA46 or LCP ; Receptacle tongue : PA46 or LCP
- C. Contact(Terminal) : copper alloy
 - Finish: (a) contact area: selective gold 30u" min
 - (b) solder area: gold flash or selective tin 100u"min
 - (c) underplated: nickel 50u"Min
- D. Emc & Latch : stainless steel, Finish: nickel 50u"min overall.
- E. Shell: stainless steel, Finish: nickel 50u" min overall.

3.3 RATINGS

- A. Current Rating: 5A max
- B. Operating temperature: -40 $^\circ\!{\rm C}$ to 85 $^\circ\!{\rm C}$
- Storage and Shipping temperature: -40 $^\circ\!\mathrm{C}$ to 85 $^\circ\!\mathrm{C}$
- Humidity: 90% max. non- condensing

3.4 TEST CONDITION

The product is designed to meet the electrical, mechanical and environmental Performance requirements specified in Para. 3.5. Temperature range: $25^{\circ}C \pm 10^{\circ}C$ Humidity range: $25\% \sim 85\%$

3.5 TEST REQUIREMENTS AND PROCEDURES SUMMARY

.3.5.1 EXAMINATION

.0.0.1			
ITEM	DESCRIPTION	REQUIREMENT	PROCEDURED
1	Examination of Product	Meets requirements of product drawing	Visual inspection No physical damage
3.5.2 E			
ITEM	DESCRIPTION	Performance Requirement	Test Procedure
1	Low Level Contact Resistance (LLCR)	The following requirements apply to the power and signal contacts: 40 mΩ (max) initial for VBUS, GND and all other contacts. 50 mΩ maximum after initial measurement.	EIA-364-23 Measure at 20 mV (Max) open circuit at 100 mA. The low level contact resistance (LLCR) measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. The test boards shall be provided with the connectors to be tested.
2	Insulation Resistance	A minimum of 100 MΩ insulation resistance is required between adjacent contacts of unmated and mated connectors.	EIA-364-21 100 MΩ Min Initial, Add100 V DC Applicable to both receptacle and plug.
3	Dielectric Withstanding Voltage	100 Volts AC (RMS) is applied between adjacent contacts of unmated and mated connectors.	EIA-364-20 Measurement per Method B. Applicable to both receptacle and plug. No Breakdown
4	Contact Current Rating	When current is applied to the contacts, the temperature rise shall not exceed limit at the location defined in Appendix C.	EIA 364-70 - Method B See Appendix C

3.5.3 MECHANICAL

ITEM	DESCRIPTION	REQUIREMENT	PROCEDURED
1	Insertion		EIA-364-13 At a maximum rate of 12.5 mm (0.492") per minute.

2	Extraction Force	8 N to 20 N measured after a preconditioning of five insertion/extraction cycles 6 N to 20 N after the specified insertion/extraction or durability cycles.	EIA-364-13 at a maximum rate of 12.5 mm (0.492") per minute (This requirement does not apply when the connectors are used in a mechanical docking application.)
3	Durability	Contact Resistance: 40 m Ω (Max) initial for VBUS, GND and all other contacts. After test contact resistance 50 m Ω Max. Appearance: No breakdown	EIA-364-09 The durability rating shall be 10,000 cycles minimum for the USB Type-C connector family. The durability test shall be done at a maximum rate of 200 cycles per hour and no physical damage to any part of the connector and cable assembly shall occur.
4	Vibration	After test contact resistance 50 mΩ Max. Discontinuity less than 1µs and no physical damage.	EIA-364-28D
5	4-Axis Continuity Test	No discontinuities greater than 1 microsecond duration in any of the four orientations tested.	See Appendix D for detailed test fixtures and procedures. Plug and Receptacle: Subject the mating interface to the moments defined in Appendix D for at least 10 seconds.

3.5.4 ENVIRONMENTAL

ITEM	DESCRIPTION	REQUIREMENT	PROCEDURED
1	Temperature Life	Appearance: No damage Low level contact resistance 50 mΩ (Max)	EIA 364-17, Method A. 105° C without applied voltage for 120 hours. 105° C without applied voltage for 72 hours when used as preconditioning.
2	Humidity and Temperature Cycles	After test contact resistance 50 mΩ Max. no physical damage.	EIA-364-31B,Method II,Condition A Temperature:40±2℃ Humidity:90~95%(RH) Period :96 hours
3	Mixed Flow Gas	After test contact resistance 50 mΩ Max. no physical damage.	EIA 364-65,Class II A Samples should be placed in an environmentally controlled 'test chamber' that is monitored by a gas analyzing system for controlled concentrations of the specified gas mixture. Test coupons shall also be used and the weight gain reported. Test duration is 7 days.

4	Thermal Shock	After test contact resistance 50 m Ω Max. no physical damage.	EIA 364-32, Test Condition I 10 Cycles –55℃ and +85℃.
5	Salt spray	After test contact resistance 50 mΩ Max. no corrosion.	EIA-364-26B Test condition B At temp.35°±2°cR/H95-98% Salt NaCl Mist5%,48 hours continuous spray for FG,No cleaning and brush, 35 degree baking Within no more than 16hours
6	Solderability	The test area shall be covered more than 95% of immersed area with flash solder.	Solder temperature:180℃±3℃ Period:5 sec.
7	Resistance to soldering heat	Without any deformation of case or excessive looseness of the terminals (pins). Electrical characteristics shall be satisfied. No any damage after reflow	LOW TEMPRATURE SOLDER, PEAK TEMP : 180º+/-3º

3.5.5 IPX8 water proof

1	IPX8 water proof	No water leakage	refer to IEC/EN 60529 IPX8 requirement, 1.5m/30 minutes, reflow twice before test and tested after Group B,C.
---	------------------	------------------	---

3.5.6 Standard Test Conditions

Temperature	15 °C to 35°C
Pressure	86 to 106 kPa
Humidity	25% to 85%

3.5.7 RECOMMENDED IR REFLOW PROFILE(LOW TEMPRATURE SOLDER, PEAK TEMP : 170°+0 ° /-5 °)

3.6 PRODUCT QUALIFICATION AND REQUALIFICATION TEST SEQUENCE All samples have to be soldered on PCB and reflow two times total before measuring and testing.

			Test Group									
Test or Exa	amination	Α	В	С	D	Е	F	G	Н	I	J	
					Те	st Seque	ence(a	a)	1	1	I	
Examinatio	on of Product	1,8	1,10	1,8	1,12	1,14	1,3	1,3	1,6	1,3	1,3	
Contact Re	esistance	2,5,7	2,5,7,9	2,5,7	2,5,7,9,11	3,11			2,5			
Insulation	Resistance					13						
Dielectric Voltage	Withstanding					2,12						
Contact Cu	urrent Rating							2				
Insertion F	orce					5						
Extraction	force					6,8,10						
	Reseating (3 cycles)	6	8		10							
	×4 Cycles					4						
Durability	×25 Cycles					7						
	×50Cycles	3	3	3	3				3			
	×10000Cycles					9						
Vibration				6								
4-Axis Cor	ntinuity Test						2					
Temperatu	re Life	4										
Temperatu _ife(precon				4	4							
Humidity a Temperatu	ind		6									
Mixed Flov	-				6							
Thermal SI	hock		4									
Thermal di	sturbance				8							
Salt spray									4			
Resistance soldering										2		
Solderabili											2	
Waterproo	f		11	9								

Sample size	5	5	5	10	5	8	3	5	5	5	

NOTE:

(a) Numbers indicate sequence in which tests are performed.(b) Sampling Quantity: See sample size

Test Group A (required for all connectors)

Test Order	Test	Test procedure	Condition of test specimens	Test criteria
1	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	40 milliohms max for all contacts. Baseline measurement.
2	Durability (Preconditioning)	EIA-364-09 Perform 50 unplug/plug cycles		No evidence of physical damage
3	Temperature life	EIA-364-17, method A 105° C without applied voltage for 120 hours.	Mated	None
4	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
5	Reseating	Manually unplug/plug the connector or socket. Perform 3 such cycles		No evidence of physical damage
6	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.

Test Group B (required for all connectors)

Test Order	Test	Test procedure	Condition of test specimens	Test criteria
1	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	40 milliohms max for all contacts. Baseline measurement.
2	Durability (Preconditioning)	EIA-364-09 Perform 50 unplug/plug cycles		No evidence of physical damage
3	Thermal shock	EIA-364-32, test condition I 10 cycles with the exception of exposure times. Place a thermocouple in the center of the largest mass component of the connector that is in the center of the test chamber to insure that the contacts reach the temperature extremes before ramping to the other temperature.	Mated	None.

4	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
5	Cyclic temperature and humidity	EIA-364-31 Cycle the connector between 25 °C ±3 °C at 80 % ±3% RH and 65 °C ±3 °C at 50 % ±3% RH. Ramp times should be 0.5 hour and dwell times should be 1.0 hour. Dwell times start when the temperature and humidity have stabilized within the specified levels. Perform 24 such cycles.	Mated	None.
6	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
7	Reseating	Manually unplug/plug the connector or socket. Perform 3 such cycles		No evidence of physical damage
8	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
9	IPX8 water proof	refer to IEC/EN 60529 IPX8 requirement, 1.5m/30 minutes, reflow twice before test and tested after Group B,C.		No water leakage

Test Group C (required for all connectors)

Test Order	Test	Test procedure	Condition of test specimens	Test criteria
1	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	40 milliohms max for all contacts. Baseline measurement.
2	Durability (Preconditioning)	EIA-364-09 Perform 50 unplug/plug cycles		No evidence of physical damage
3	Temperature life (preconditioning)	EIA-364-17, method A 105° C without applied voltage for 72 hours when used as preconditioning.	Mated	None.

4	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
5	Vibration	EIA-364-28, test condition VII, test condition letter D 15 minutes in each of 3 mutually perpendicular directions. Both mating halves should be rigidly fixed so as not to contribute to the relative motion of one contact against another. The method of fixturing should be detailed in the test report.	Mated	No evidence of physical damage. No discontinuities of 1 µS or longer duration when mated connector during test.
6	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max
7	IPX8 water proof	refer to IEC/EN 60529 IPX8 requirement, 1.5m/30 minutes, reflow twice before test and tested after Group B,C.		No water leakage

Test Group D

Test Order	Test	Test procedure	Condition of test specimens	Test criteria
1	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	40 milliohms max for all contacts. Baseline measurement.
2	Durability (Preconditioning)	EIA-364-09 Perform 50 unplug/plug cycles		No evidence of physical damage
3	Temperature life (preconditioning)	EIA-364-17, method A 105° C without applied voltage for 72 hours when used as preconditioning.	Mated	None.
4	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
5	Mixed flowing gas	EIA 364-65,Class II A Samples should be placed in an environmentally controlled 'test chamber' that is monitored by a gas analyzing system for controlled concentrations of the specified gas mixture. Test coupons shall also be used and the weight gain reported. Test duration is 7 days.	Mated	Low level contact resistance meets spec before and after the mixed flowing gas test.
6	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.

7	Thermal disturbance	Cycle the connector or socket between 15 °C \pm 3 °C and 85 °C \pm 3 °C, as measured on the part. Ramps should be a minimum of 2 °C per minute, and dwell times should insure that the contacts reach the temperature extremes (a minimum of 5 minutes). Humidity is not controlled. Perform 10 such cycles.	Mated	None.
8	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
9	Reseating	Manually unplug/plug the connector or socket. Perform 3 such cycles.		No evidence of physical damage
10	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.

NOTES

1. Plugs: 1) expose 1/2 of the specimens unmated for 2/3 of the test duration; 2) mate each specimen to the same receptacle that it was mated to during temperature life (preconditioning); and, 3) expose for the remainder of the test duration.

2. Receptacles: 1) expose 1/2 of the specimens unmated for 2/3 of the test duration; 2) mate each specimen to the same plug that it was mated to during temperature life (preconditioning); and, 3) expose for the remainder of the test duration.

Test Group E

Test Order	Test	Test Procedure	Condition of Test Specimens	Test Criteria
1	Dielectric withstanding voltage	EIA-364-20, 100 VAC (RMS)	Mated	No disruptive discharge.
2	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	40 milliohms max for all contacts. Baseline measurement.
	Durability (Preconditioning)	EIA-364-09 Perform 4 unplug/plug cycles. followed by an unplug.		No evidence of physical damage.
3	Insertion force	EIA 364-13 Perform the measurement at a maximum speed of 12.5 mm (0.492") per minute.		Within the range of 5 N to 20 N.
4	Extraction force	EIA 364-13 Perform the measurement at a maximum speed of 12.5mm (0.492") per minute.		Within the range of 8 N to 20 N. Initial reading
5	Durability	EIA 364-9 Perform 25 plug/unplug cycles. Cycle rate of 500 ± 50 cycles per hour followed by a plug.		No evidence of physical damage
6	Extraction force	EIA 364-13 Perform the measurement at a maximum speed of 12.5mm (0.492") per minute		Within: a) 33% of the initial reading, and b) 8 N to 20 N.
7	Durability	EIA 364-9 Perform 2,468 plug/unplug cycles. Rotate the receptacle or plug 180° and perform 2,500 plug/unplug cycles. Rotate the receptacle or plug 180° and perform 2,500 plug/unplug cycles. Rotate the receptacle or plug 180° and perform 2,500 plug/unplug cycles. Cycle rate of 500 ± 50 cycles per hour (total of 10,000 plug/unplug cycles, flipping every		No evidence of physical damage

		2,500 cycles).		
8	Extraction force	EIA 364-13 Perform the measurement at a maximum rate of 12.5mm (0.492") per minute.		Within 6 N to 20 N.
9	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
10	Dielectric withstanding voltage	EIA-364-20, 100 VAC (RMS)	Mated	No disruptive discharge
11	Insulation Resistance	EIA 364-21. Applicable to both receptacle and plug.	Both unmated and mated	A minimum of 100 MΩ insulation resistance is required between adjacent contacts of unmated and mated connectors

1. Separate sets of test specimens may be used to assess dielectric withstanding voltage and the change in low level contact resistance.

2. Dielectric withstanding voltage testing should involve different contacts than low level contact resistance testing.

3. The durability test requires that the plug be fully dis-engaged or separated from the receptacle during the cycling.

Test Group F

1	4-axes Continuity	See appendix D for detailed fixture and procedures.	Mated	No discontinuities
		Plug and receptacle: Subject the mating interface to		greater than 1
		the moments defined in Appendix D for at least 10		microsecond duration
		seconds.		in any of the four
				orientations tested.

Appendix D:4-axes Continuity test

1. Test standards

Plugs shall be supplied with a representative overmold or mounted on a 2-layer printed circuit board (PCB) between 0.8 mm and 1.0 mm thickness as applicable. A USB Type-C receptacle shall be mounted on a 2-layer PCB between 0.8 mm and 1.0 mm thickness. The PCB shall be clamped on three sides of the receptacle no further than 5 mm away from the receptacle outline. The receptacle PCB shall initially be placed in a horizontal plane, and a perpendicular moment shall be applied to the plug with a 5 mm ball tipped probe for a period of at least 10 seconds at a distance of 15 mm from the mating edge of the receptacle shell in a downward direction, perpendicular to the axis of insertion. See Table D-1 for the force and moment to be applied.

The continuity across each contact shall be measured throughout the application of the tensile force. Each nonground contact shall also be tested to confirm that it does not short to the shell during the stresses. The PCB shall then be rotated 90 degrees such that the cable is still inserted horizontally and the tensile force in Table D-1 shall be applied again in the downward direction and continuity measured as before. This test is repeated for 180 degree and 270 degree rotations. Passing parts shall not exhibit any discontinuities or shorting to the shell greater than 1 µs duration in any of the four orientations.

One method for measuring the continuity through the contacts is to short all the wires at the end of the cable pigtail and apply a voltage through a pull-up to each of VBUS, USB D+, USB D-, SBU, CC, and USB SuperSpeed pins, with the GND pins connected to ground. Alternate methods are allowed to verify continuity through all pins.

2. Load test force requirements:						
Receptacle configuration with respect to mounting surface	Force at 15 mm from receptacle shell mating edge (N)	Moment with respect to receptacle shell mating edge (Nm)				
Right angle	20	0.30				
Vertical	8	0.12				

2. Load test force requirements

1	Contact current rating	See appendix C	Mated	When current is applied to the contacts the temperature rise shall not exceed limit a the location defined in Appendix C.
A	dix C:Contact (Numerat Deting		

Appendix C:Contact Current Rating 1. Test PCB design

Item	Trace width (mm)	Trace length (mm)	Thickness	
		on each PCB		
Signal trace	0.25 max.	13 max.	35 µm (1 oz.	
			copper)	
Ground trace	1.57 max.	38 max.	35 µm (1 oz.	
			copper)	
VBUS and VCONN	1.25 max.	30 max.	35 µm (1 oz.	
			copper)	
РСВ	N/A	N/A	0.80 – 1.20 mm	

2. Test standards

A current of 5 A shall be applied collectively to VBUS pins (i.e., pins A4, A9, B4, and B9) and 1.25 A shall be applied to the VCONN pin (i.e., B5) as applicable, terminated through the corresponding GND pins (i.e., pins A1, A12, B1, and B12). A minimum current of 0.25 A shall also be applied individually to all the other contacts, as applicable. When current is applied to the contacts, the temperature of the connector pair shall be allowed to stabilize. The temperature rise of the outside shell surface of the mated pair above the VBUS and GND contacts shall not exceed 30°C above the ambient temperature. Figure C- provides an illustration of the measurement locations.

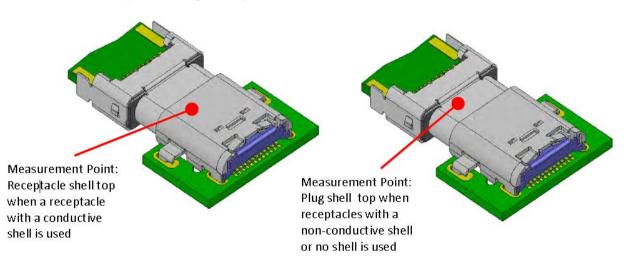


Figure C-1 Temperature Measurement Points

Test Orde r	Test	Test Procedure	Condition of Test Specimens	Test Criteria
1	Visual inspection	Meets requirements of product drawing. No physical damage.		No evidence of physical damage
2	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	40 milliohms max for all contacts. Baseline measurement.

3	Salt spray	EIA-364-26B Test condition B At temp.35°±2°cR/H95-98% Salt NaCl Mist5%,48 hours continuous spray for FG, No cleaning and brush, 35 degree baking Within no more than 16hours		No evidence of physical damage
4	Low level contact resistance	EIA-364-23 The measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 4-1.	Mated	50 milliohms max.
5	Visual inspection	Meets requirements of product drawing. No physical damage.		No evidence of physical damage

	Test Group I				
Test Orde r	Test	Test Procedure	Condition of Test Specimens	Test Criteria	
1	Visual inspection	Meets requirements of product drawing. No physical damage.		No evidence of physical damage	
2	Resistance to Soldering Heat	Solder temperature:250°C+5/-0°C Period: 10 sec. MIL-STD-202F method 20A.		The connector will withstand a lead free solder process. Standar d test conditions associated with this requirement are as follows: Must withstand a solder process of 250C for 10 seconds.	
3	Visual inspection	Meets requirements of product drawing. No physical damage.		No evidence of physical damage	

Test Group J					
Test Orde r	Test	Test Procedure	Condition of Test Specimens	Test Criteria	
1	Visual inspection	Meets requirements of product drawing. No physical damage.		No evidence of physical damage	
2	Solderability	EIA-364-52 Solder temperature:245°C±5°C Period:5 sec.		The test area shall be covered more than 95% of immersed area with flash solder.	
3	Visual inspection	Meets requirements of product drawing. No physical damage.		No evidence of physical damage	