核技术利用建设项目

浙江先导精密机械有限公司 X 射线固定式探伤建设项目 环境影响报告表 (公示稿)

浙江先导精密机械有限公司 2025 年 07 月

生态环境部监制

核技术利用建设项目

浙江先导精密机械有限公司 X 射线固定式探伤建设项目 环境影响报告表

建设单位名称: 浙江先导精密机械有限公司

建设单位法人代表(签名或签章):

通讯地址:浙江省衢州市常山县金川街道龙江路5号、7号

邮政编码: 324200 联系人:

目 录

表 1	项目基本情况	1
表 2	放射源	10
表 3	非密封放射性物质	10
表 4	射线装置	11
表 5	废弃物(重点是放射性废弃物)	12
表 6	评价依据	13
表 7	保护目标与评价标准	16
表 8	环境质量和辐射现状	22
表 9	项目工程分析与源项	25
表 10	辐射安全与防护	31
表 11	环境影响分析	38
表 12	辐射安全管理	48
表 13	结论与建议	53
表 14	审批	56

表 1 项目基本情况

建设	达项目名称		射线固定	定式探伤建*	设项目						
建	设单位		浙江先导精密机械有限公司								
注	人代表		联系人		联系电话						
注	E册地址		浙江省衢州市常山县金川街道龙江路5号、7号								
项目	建设地点		浙江省衢州市	5常山县金	三川往	f道龙江 5	路5号6#车间	可内			
立项	軍批部门		/	批准文	て号		/				
建设	t项目总投	120	项目环保投资	10		投资比值	列(环保投	8.3%			
资	(万元)	120	(万元)	10		资/总	投资)	0.370			
项	自性质	☑新建	□改建 □扩建	建 □其化	<u>b</u>	占地面	积 (m²)	23.6			
	之 友 白玉 375	□销售		□I类 □II类 □III类 □IV类 □V类							
	放射源	□使用	□Ⅰ类(医	□Ⅰ类(医疗使用)□Ⅱ类□Ⅲ类□Ⅳ类□Ⅴ							
ے۔	-1-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-	□生产		□制	备 P	ET 用放射	射性药物				
应用	非密封放	□销售				/					
用	射性物质	□使用				<u></u>]丙				
类		□生产				类 口	III类				
型	射线装置	□销售				类 口	III类				
		☑使用			☑ ∐	类 □]	II类				
	其他				/						

1.1 项目概述

1.1.1 建设单位简介

浙江先导精密机械有限公司(以下简称"公司")成立于2014年03月18日,注册地位于浙江省衢州市常山县金川街道龙江路5号、7号,是一家专业从事半导体芯片用精密石英制品、精密机械、机械设备及其零部件等生产及销售为一体的私营企业。公司租赁杭州大和热磁电子有限公司位于常山县金川街道龙江路7号相关用房,建筑面积共16101.4平方米,租赁杭州大和热磁电子有限公司位于常山县金川街道龙江路5号相关用房,建筑面积共28205.26平方米,具体见附件4。

公司于 2022 年 3 月委托杭州一达环保技术咨询服务有限公司编制完成了《浙江先导精密 机械有限公司真空腔体、精密部件产品生产、精密组装项目环境影响登记表》,并于 2022 年 4 月 15 日取得了衢州市生态环境局常山分局出具的《建设项目环评承诺备案表》(衢环常建备

1

2022008 号), 于 2024 年完成自主验收, 具体见附件 5。

1.1.2 项目建设目的和任务由来

为保障公司生产产品的质量,满足客户对产品质量的要求。公司拟在 6#车间内新建 1 间探伤室,并配套建设暗室、评片室等辅助用房,拟购 1 台 RIX-250MC-2 型 X 射线定向探伤机和 1 台 XXGH-2505z 型 X 射线周向探伤机,对公司自生产精密部件产品进行无损检测。

根据原环境保护部、国家卫生和计划生育委员会公告 2017 年第 66 号关于《发布射线装置分类的公告》:本项目 X 射线探伤机归入到"工业用 X 射线探伤装置"的范畴,属于 II 类射线装置。对照中华人民共和国生态环境部令第 16 号《建设项目环境影响评价分类管理名录 (2021年版)》,本项目属于五十五、核与辐射: 172、核技术利用建设项目——使用 II 类射线装置,应编制环境影响报告表。

为保护环境,保障公众健康,浙江先导精密机械有限公司委托卫康环保科技(浙江)有限公司对本项目进行环境影响评价,环评委托书见附件1。评价单位接受委托后,通过现场踏勘、收集有关资料等工作,结合本项目特点,依据《辐射环境保护管理导则 核技术利用建设项目 环境影响评价文件的内容和格式》(HJ 10.1-2016)的相关要求,编制完成了本项目的环境影响报告表。

1.1.3 项目建设内容与规模

浙江先导精密机械有限公司拟在浙江省衢州市常山县金川街道龙江路 5 号 6#车间内,新建1间探伤室,并配套建设暗室、评片室等辅助用房,拟购1台 RIX-250MC-2型 X 射线定向探伤机和1台 XXGH-2505z型 X 射线周向探伤机,对公司自生产的精密部件产品进行无损检测。本项目依托主体工程危废暂存间储存废胶片、洗片废液和废显(定)影液。

射线装置参数详见表 1-1。

						•	
设备名称	类 别	规格	数 量	最大管电 压(kV)	最大管电 流(mA)	工作场所	主射方向
X射线定向 探伤机	II 类	RIX-250MC-2	1 台	250	3	6#车间的 探伤室内	定向机、主射方向朝北侧
X射线周向 探伤机	II 类	XXGH-2505z	1 台	250	5	6#车间的 探伤室内	水平周向、主射方向朝东 侧、南侧、西侧、北侧

表1-1 本项目射线装置配置一览表

1.2 相关规划符合性分析

1.2.1 用地规划符合性分析

本项目位于浙江省衢州市常山县金川街道龙江路 5 号 6#车间内。根据业主提供的租赁协议及产权证(附件 4),本项目用地性质为工业用地。因此,本项目建设符合城乡规划和当地土地利用规划的要求。

1.2.2 与《常山县工业园区控制性详细规划(2017年修编)》符合性分析:

(1) 规划范围

常山工业园区位于常山县城西部,规划范围与原有规划一致,即东至现有 205 国道,南至新 320 国道,西至规划 205 国道(改线),北至玉怀山余脉南麓,总用地面积 9.48 平方公里。

- (2) 规划功能定位及产业导向
- ①功能定位

环境美好的现代化产业新城。

②产业导向

围绕打造绿色实力新工业、提升活力新型服务业,优化提升轴承、绿色食品、纺织等行业,创新发展以电子信息为主导的新材料产业、家居新产业和生物医药产业。加快发展现代物流等生产性服务,强化生活居住、商贸服务、休闲旅游配套服务。

a.先进制造业:以现有的轴承、纺织等传统产业为基础,促进产业转型升级。加强家居创新,重点发展环保家居、智能家居、定制家居。组建一批生物医药专业孵化器,建立研发、孵化和生产一体化基地。

b.绿色食品加工业:以现状食品加工产业为基础,着力引进和培育壮大胡柚、山茶油和食用菌加工等食品加工产业。

- c.新材料产业: 积极引进电子产业,以微型计算机、现代家电、移动通讯为重点。
- d.休闲养生业:依托园区东北部良好的自然生态环境和便利的区位条件,引进养生养老服务机构,打造辐射上海、江西、福建等周边区域的高端养生养老基地。
- e.物流业:发挥浙闽赣皖四省边界区位优势,积极发展公路物流,打造浙闽赣皖四省边界重要综合物流服务基地和货物分拨中心。着力打造集运输、转运、储存、配送、装拆箱、加工、货物装卸、仓储管理、多式联运及信息处理等功能于一体的综合物流园区。

f.配套生活性服务业:以工业园区向产业集聚区发展为目标,发展与园区人口规模配套的商贸服务业,满足园区及周边区域人口消费需求。

(3)产业结构

围绕打造绿色实力新工业、提升活力新型服务业,优化提升轴承、绿色食品、纺织等行业,

创新发展以电子信息为主导的新材料产业、家居新产业和生物医药产业。加快发展现代物流等 生产性服务,强化生活居住、商贸服务、休闲旅游配套服务。

符合性分析:本项目为 X 射线探伤机的应用,为核技术利用项目,且本项目选址位于常山县工业园区,属于第二类工业用地区域,符合工业园的规划布局。因此,本项目的建设符合常山县生态工业园控制性详细规划修编规划的要求。

1.2.3 与《浙江常山工业园区控制性详细规划(2017 年修编)环境影响报告书》符合性分析 (1) 生态空间清单

本项目位于浙江省衢州市常山县金川产业集聚重点管控区,该区管控要求如下:

表 1-2 生态空间清单符合性分析

工业区 内的规划区块	生态空间名称 及编号	生态空间范围示 意图	管控要求	符合性分析
浙衢常金业重控江州山川集点区省市县产聚管	ZH33082220040		污染物排放管控 严格实施污染物总量控制制度,根据区域环境 质量改善目标,削减污染物排放总量。新建二 类、三类工业项目污染物排放水平要达到同行 业国内先进水平。加快落实污水处理厂建设及 提升改造项目,推进工业园区(工业企业)"污水零直排区"建设,所有企业实现雨污分流。 加强土壤和地下水污染防治与修复。 环境风险防控 定期评估沿江河湖库工业企业、工业集聚区环境和健康风险。强化工业集聚区企业环境风险 防范设施设备建设和正常运行监管,加强重 点环境风险管控企业应急预案制定,建立常态 化的企业隐患排查整治监管机制,加强风险防 控体系建设。	体、特別學生 带平先染 "目项厂应患制综符要的,是有人的,是是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一

(2) 环境准入条件清单

表 1-3 环境准入清单

区域	产业	类别	禁止类	限制类
	纺织服装		7 	(1)有使用有机溶剂的涂层工艺 (2)动物纤维烧毛 (3)棉织物碱退浆工艺
		产品清单	(1)化学纤维产品(除单纯纺丝外) (2)缫丝产品 (3)利用野生动物皮毛加工的皮 草产品	(1)涂层布 (2)使用大量溶剂生产的皮鞋产 品
		工艺清单	/	(1)发酵(除"两柚一茶"外) (2)果菜原汁半成品
	食品			(1)屠宰 (2)水产加工 (3)酒(勾兑除外)
浙江省衢州市 常山县金川产 业集聚重点管	机械电子	工艺清单	(2)单纯电镀;含氰电镀	(1)单纯的酸洗、钝化、电解、化 学抛光、铝氧化、封闭等化学表 面处理工艺
控区 ZH33082220040		产品清单	(2)含铅矿灯 (3)含液汞的灯具	(1)涉及一类重金属排放的印刷 电路板 (2)有机薄膜 (3)涉及一类重金属的贵金属粉
	金属制品		(4)今镇封闭工艺的热反馈	(1)单纯的酸洗、钝化、电解、化 学抛光、铝氧化、封闭等化学表 面处理工艺 (2)溶剂型为主的喷漆
		产品清单	(1)金属冶炼产品 (2)合金	(1)铸铁 (2)彩钢
		工艺清单	(1)涉及熔炼、电镀和化学表面处 (2)涉及光气及光气化、氯碱电解 氟化、加氢、重氮化、氧化、过 基化等危险化学反应工艺	、合成氨、氯化、硝化、裂解、
	新型材料		(1)传统砖瓦产品 (2)水泥、石灰和石膏 (3)石棉制品 (4)平板玻璃、涉铅光学玻璃 (5)玻璃纤维	(1)玻璃纤维增强塑料 (2)岩棉产品 (3)高污染、高能耗的日用、建筑 陶瓷制品

_			T	T	,			
				(6)沥青制品				
				(7)石墨和碳素 (1)不符合国家和地方产业政策				
			工艺清单	的生产工艺和设备	/			
		橡胶制品		(1)混炼胶终产品	炼胶量大的橡胶制品,硫化剂年			
			产品清单	(2)冉生胶	用量 100 吨以上			
				(3)松 暗				
				(1)涉及大量添加高毒增塑剂的 加工工艺	(1)开炼和密炼			
			工口相平	(2)塑料电镀	(2)溶剂型为主的喷漆			
				(1)塑料人造革、合成革				
		塑料制品		(2)废塑料再生				
			产品清单	(3)厚度小于 0.025mm 的超薄塑料贴物体。原度小玉 0.01	(1)普通塑料薄膜			
			, , , , ,	料购物袋、厚度小于 0.01mm 的聚乙烯农用地膜、含塑料微珠日	(2)塑胶产品			
				派乙烯 《				
				(1)涉及熔炼、电镀、喷漆和化学				
			工艺清单	品产业				
		II. F	工口相干	(2)涉及塑料加上上艺的,参照塑				
		工艺品		(3)涉及橡胶加工工艺的,参照橡	版制品产业			
			产品清单	(1)涉及塑料人造革、合成革生产的产品	型胶产品			
) нитн —	(2)涉及废塑料再生的产品	至(次) 印			
					(1)涉及使用大量有机溶剂提炼			
			工艺清单	涉及化学反应的	工艺的中成药、中药饮片生产			
				(1) 从 兴井 日本区 (不) 正五	(2)发酵工艺			
				(1)化学药品制造(不涉及化学反应的除外)				
				(2)生物、生化制品制造(不涉及				
		医药制造		化学反应的除外)				
			产品清单	(3)兽用药品制造(不涉及化学反	/			
			7 66113 1	应的除外)	,			
				(4)生物药品制造(不涉及化学反应的除外)				
				(5)基因工程药物和疫苗制造(不				
				涉及化学反应的除外)				
		物流仓储	产品清单	涉及有毒、有害及危险品的仓储、 物流配送	/			
H				(1)畜禽养殖				
				(2)煤炭	(1)淡水养殖			
		其它产业	行业清单 ((3)化工石化	(2)油库和气库 (不含加油站、加			
		一 六山/ 並		(4)造纸(手工纸、加工纸制造除				
				外)				
L	符合性分		核技术利		·周区范围 居工第二米工业			

符合性分析:本项目为核技术利用项目,项目位于常山县工业园区范围,属于第二类工业用地区域,符合工业园的规划布局。对照规划环评结论性清单,项目符合生态空间清单各项管控要求,未列入环境标准清单中禁止的行业清单、工艺清单和产品清单,满足环境标准清单要

求。因此,项目建设符合常山县生态工业园区规划环评要求。

1.2.4 "三区三线"符合性分析

根据《自然资源部办公厅关于浙江等省(市)启用"三区三线"划定成果作为报批建设项目用地用海依据的函》(自然资办函〔2022〕2080号〕要求,"三区三线"划定成果作为建设项目用地用海报批的依据。其中"三区"具体指城镇空间、农业空间、生态空间三种类型的国土空间,"三线"分别对应在城镇空间、农业空间、生态空间划定的城镇开发边界、永久基本农田、生态保护红线三条控制线。

本项目位于浙江省衢州市常山县金川街道龙江路5号6#车间内,根据公司所在区域"三区三线"图(附图12),本项目属于城镇开发边界,用地及评价范围均不涉及永久基本农田、生态保护红线。因此,本项目建设符合浙江省"三区三线"要求。

1.2.5 与常山县生态环境分区管控动态更新方案符合性分析

生态环境分区管控是以改善生态环境质量为核心,明确生态保护红线、环境质量底线、资源利用上线,划定生态环境管控单元,在一张图上落实"三线"的管控要求,编制生态环境准入清单,构建生态环境分区管控体系。

(1) 生态保护红线

根据《常山县生态环境分区管控动态更新方案》,本项目位于浙江省衢州市常山县金川产业集聚重点管控区(ZH33082220040)。与常山县三区三线图(附图 12)对比,本项目所在区域不涉及生态保护红线。

(2) 环境质量底线

根据环境质量现状监测结果,本项目拟建场所周围环境γ辐射空气吸收剂量率属于正常本底范围。在落实本环评提出的各项污染防治措施后,不会对周围环境产生不良影响,能维持周边环境质量现状,满足该区域环境质量功能要求,因此本项目符合环境质量底线要求。

(3)资源利用上线

本项目营运过程中会消耗一定量的电源和水资源等,主要来自工作人员的日常办公和设施 用电,但项目资源消耗量相对区域资源利用总量较少,符合资源利用上线要求。

(4) 生态环境准入清单

根据《常山县生态环境分区管控动态更新方案》,本项目位于浙江省衢州市常山县金川产业集聚重点管控区(ZH33082220040)。该管控单元生态环境准入清单见表 1-4。

表 1-4 本项目与常山县生态环境分区管控动态更新方案符合性分析

	生态环境管控要求	本项目情况	符合性分析
空间布局约束	根据产业规划严格执行项目准入机制,控制三类工业项目数量。优化完善区域产业布局,合理规划布局三类工业项目,鼓励对三类工业项目进行淘汰和提升改造。合理规划布局居住、医疗卫生、文化教育等功能区块,与工业区块、工业企业之间设置防护绿地、生活绿地等隔离带。	本项目为 X 射线工业探伤项目,不属于三类工业项目。 厂区内及厂区围墙外已设置绿地和绿化带。	符合
污染物排 放管控	严格实施污染物总量控制制度,根据区域环境质量改善目标,削减污染物排放总量。新建二类、三类工业项目污染物排放水平要达到同行业国内先进水平,推动企业绿色低碳技术改造。新建、改建、扩建高耗能、高排放项目须符合生态环境保护法律法规和相关法定规划,强化"两高"行业排污许可证管理,推进减污降碳协同控制。加快落实污水处理厂建设及提升改造项目,深化工业园区(工业企业)"污水零直排区"建设,所有企业实现雨污分流。加强土壤和地下水污染防治与修复。重点行业按照规范要求开展建设项目碳排放评价。	本项目不涉及污染物总量控制,探伤过程中产生的极少量的臭氧、氮氧化物等气体,对环境影响较小。产生的危废委托有资质单位处置。	符合
环境风险 防控	定期评估沿江河湖库工业企业、工业集聚区环境和健康 风险。强化工业集聚区企业环境风险防范设施设备建设 和正常运行监管,加强重点环境风险管控企业应急预案 制定,建立常态化的企业隐患排查整治监管机制,加强 风险防控体系建设。	公司拟制定《辐射 事故应急预案》,并 设置辐射事故应急 小组和应急物资, 具备完善的风险防 范措施。	符合
资源开发 效率要求	推进工业集聚区生态化改造,强化企业清洁生产改造,推进节水型企业、节水型工业园区建设,落实煤炭消费减量替代要求,提高资源能源利用效率。	项目使用清洁能源,运行过程推进清洁生产理念,节约资源,提高资源能源有效利用。	符合

因此,本项目符合生态环境准入清单要求。综上,本项目的建设符合《常山县生态环境分区管控动态更新方案》的要求。

1.3 项目选址及周边环境保护目标

1.3.1 项目地理位置

浙江先导精密机械有限公司拟在浙江省衢州市常山县金川街道龙江路 5 号 6#车间内新建一间探伤室,地理位置见附图 1。公司所在厂区东侧为浙江常山德迅达电子科技有限公司;南侧隔龙江路为浙江凯迈生物科技有限公司;西侧隔柚都南路为浙江先导热电科技股份有限公司和浙江富乐德石英科技有限公司;北侧隔龙翔路为常山华凯木业有限公司。公司周围环境关系见附图 2,厂区周围实景图见附图 9。

1.3.2 项目周边环境概况

本项目拟建探伤室位于 6#车间内,6#车间为单层结构,下方为土层,无地下室。探伤室 东侧紧邻评片室,2m~50m 范围内为操作室、评片室、暗室、喷砂区和厂内道路;南侧紧邻机

加工区,20m~50m 范围内为配电房和厂内道路;西侧紧邻过道,10m~50m 范围内为物料堆放区;北侧紧邻过道,5m~50m 范围内为打磨房、厂内道路和厂内宿舍。探伤室所在6#车间平面布置见附图4,本项目周围环境实景图见附图8。

1.3.3 环境保护目标

本项目环境保护目标为评价范围 50m 内辐射工作人员及公众成员。

1.3.4 选址合理性分析

本项目用地性质属于工业用地,探伤室周围 50m 范围内主要为 6#车间、厂内道路和厂内宿舍,不涉及学校、居民区、医院等环境敏感区,也不涉及生态保护红线。辐射环境影响预测,本项目运营过程中产生的电离辐射,经采取一定的辐射防护措施后对周围环境与公众健康的辐射影响是可接受的。因此,本项目选址合理可行。

1.4 产业政策符合性分析

根据国家发展和改革委员会令第7号《产业结构调整指导目录(2024年本)》,本项目X 射线探伤机的应用不属于其限制类和淘汰类项目,符合国家产业政策的要求。

1.5 实践正当性分析

根据《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)中 4.3 "辐射防护要求",对于一项实践,只有在考虑了社会、经济和其他有关因素之后,其对受照个人或社会所带来的利益足以弥补其可能引起的辐射危害时,该实践才是正当的。

本项目实施的目的是为了对公司自生产的精密部件产品进行无损检测,以提高公司生产水平和确保产品的质量,具有良好的经济效益与社会效益。经辐射屏蔽防护和安全管理后,其射线装置运行所致辐射工作人员和周围公众成员的辐射剂量符合年剂量约束值的要求,也符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中关于"剂量限值"的要求。因而,只要按规范操作,该公司使用探伤装置是符合辐射防护"实践的正当性"原则的。因此,本项目使用 X 射线探伤机是正当可行的。

1.6 原有核技术利用项目许可情况

本项目为新建项目,企业无原有核技术利用及许可情况。

表 2 放射源

序号	核素名称	总活度(Bq)/ 活度(Bq)×枚数	类别	活动种类	用途	使用场所	贮存方式与地点	备注
/	/	/	/	/	/	/	/	/

注:放射源包括放射性中子源,对其要说明是何种核素以及产生的中子流强度(n/s)。

表 3 非密封放射性物质

序号	核素名称	理化性质	活动种类	实际日最大操作 量(Bq)	□. (D .)	年最大用量 (Bq)	用途	操作方式	使用场所	贮存方式与地点
/	/	/	/ /	生 (Bq)	里(Bq) /	/ /	/	/	/	/

注: 日等效最大操作量和操作方式见《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)。

表 4 射线装置

(一)加速器:包括医用、工农业、科研、教学等用途的各种类型加速器

序号	名称	类别	数量	型号	加速粒子	最大能量(MeV)	额定电流(mA)/剂量率(Gy/h)	用途	工作场所	备注
/	/	/	/	/	/	/	/	/	/	/

(二) X 射线机,包括工业探伤、医用诊断和治疗、分析等用途

序号	名称	类别	数量	型号	最大管电压 (kV)	最大管电流 (mA)	用途	工作场所	备注
1	X射线定向探伤机	II类	1台	RIX-250MC-2	250	3	固定式探伤	6#车间内的探伤室内	拟购,本次评价
2	X射线周向探伤机	II类	1台	XXGH-2505z	250	5	固定式探伤	6#车间内的探伤室内	拟购,本次评价

(三)中子发生器,包括中子管,但不包括放射性中子源

 	b 16	光미	业, ■.	最大管电压 最大靶电流 中子强度 工作	氚	〔靶情况		友法					
序号	名称	类别	数量	型号	(kV)	(µA)	(n/s)	用途	场所	活度(Bq)	贮存方式	数量	备注
/	/	/	/	/	/	/	/	/	/	/	/	/	/

表 5 废弃物 (重点是放射性废弃物)

名称	状态	核素名称	活度	月排放量	年排放总量	排放口浓度	暂存情况	最终去向
臭氧和氮氧化物	气态	/	/	/	少量	少量	不暂存	排放至大气外环境中,臭氧在常 温下后可自行分解为氧气
							废显 (定) 影液	
废显 (定) 影液	液态	/	/	/	120kg	/	与洗片废液使用	
							专用容器收集、	 定期委托有资质的单位处理处置
废胶片	固态	/	/	/	60kg	/	废胶片用袋子收	
) abo	,	,	,	2001	,	集后集中存放于	
洗片废液	液态	/	/	/	300kg	/	危废暂存间	

注: 1、常规废弃物排放浓度,对于液态单位为mg/L,固体为mg/kg,气态为mg/m³; 年排放总量用kg。

^{2、}含有放射性的废物要注明,其排放浓度,年排放总量分别用比活度(Bq/L或Bq/kg或 Bq/m^3)和活度(Bq)。

表 6 评价依据

- (1)《中华人民共和国环境保护法》,1989年12月26日会议通过,2014年4月24日修订,2015年1月1日起施行;
- (2)《中华人民共和国环境影响评价法》,2002年10月28日会议通过,2003年9月1日起施行,2016年7月2日第一次修正,2018年12月29日起修正;
- (3)《中华人民共和国固体废物污染环境防治法》,主席令第四十三号,1995年10月30日通过,2020年4月29日第二次修订,2020年9月1日起施行;
- (4)《中华人民共和国放射性污染防治法》,主席令第六号,2003年10月1日起施行;
- (5)《建设项目环境保护管理条例》,国务院令第682号,2017年10月1日起施行;
- (6)《放射性同位素与射线装置安全和防护条例》,2005年9月14日国务院令第449号公布,2005年12月1日起施行,2014年7月29日第一次修订,2019年3月2日第二次修订;
- (7)《放射性同位素与射线装置安全和防护管理办法》,原环境保护部令第 18 号, 2011 年 5 月 1 日起施行;
- (8)《放射性同位素与射线装置安全许可管理办法》,2005年12月30日会议通过,2006年3月1日起施行;2008年12月6日修改,2017年12月20日修改,2021年1月4日修改;
- (9)《关于发布射线装置分类的公告》,原环境保护部、国家卫生和计划生育委员会公告 2017 年第 66 号, 2017 年 12 月 5 日起施行;
 - (10)《关于建立放射性同位素与射线装置辐射事故分级处理和报告制度的通知》,环发 (2006) 145号,原国家环境保护总局,2006年9月26日起施行;
- (11)《关于核技术利用辐射安全与防护培训和考核有关事项的公告》,生态环境部公告 2019 年第 57 号,2019 年 12 月 24 日印发;
- (12)《建设项目环境影响评价分类管理名录(2021年版)》,生态环境部令第 16 号,2021年 1 月 1 日起施行;
- (13)《国家危险废物名录(2025年版)》,2024年11月26日生态环境部、国家发展和改革委员会、公安部、交通运输部、国家卫生健康委员会令第36号公布,自2025年1月1日起施行:

- (14)《危险废物转移管理办法》,2021年11月30日生态环境部、公安部、交通运输部令第23号公布,2022年1月1日起施行;
- (15)《关于发布<建设项目危险废物环境影响评价指南>的公告》,原环境保护部公告 2017 年第 43 号, 2017 年 9 月 1 日印发;
- (16)《关于发布<建设项目环境影响报告书(表)编制监督管理办法>配套文件的公告》, 生态环境部公告 2019 年第 38 号, 2019 年 10 月 24 日;
- (17)《建设项目环境影响报告书(表)编制监督管理办法》,生态环境部令第9号,2019年11月1日施行:
- (18)《产业结构调整指导目录(2024年本)》,国家发展和改革委员会令第7号,2024年2月1日起施行;
- (19)《关于启用环境影响评价信用平台的公告》,生态环境部公告 2019 年第 39 号,2019 年 10 月 25 日;
- (20)《自然资源部办公厅关于浙江等省(市)启用"三区三线"划定成果作为报批建设项目用地用海依据的函》,自然资源部办公厅,自然资办函〔2022〕2080号,2022年9月30日印发:
- (21)《浙江省生态环境保护条例》,浙江省第十三届人民代表大会常务委员会公告第71号,2022年8月1日起施行;
- (22)《浙江省固体废物污染环境防治条例》,浙江省第十三届人民代表大会常务委员会公告第80号,2006年3月29日通过,2022年9月29日修订通过,2023年1月1日起施行;
- (23)《浙江省建设项目环境保护管理办法》,2011年10月25日浙江省人民政府令第288号公布,2011年12月1日起施行,2014年3月13日第一次修正,2018年1月22日第二次修正,2021年2月10日第三次修正;
- (24)《浙江省辐射环境管理办法》,2021年省政府令第388号修订,2021年2月10日 修订:
- (25)《关于印发浙江省辐射事故应急预案的通知》,浙政办发〔2018〕92号,浙江省人民政府办公厅,2018年9月28日印发;
- (26)《浙江省生态环境厅关于发布<省生态环境主管部门负责审批环境影响评价文件的建设项目清单(2024年本)>的通知》,浙环发(2024)67号,浙江省生态环境厅,2025

年2月2日起实施;

- (27) 关于印发《浙江省生态环境分区管控动态更新方案》的通知,浙环发〔2024〕18号,浙江省生态环境厅,2024年3月28日起施行;
- (28)《常山县人民政府关于印发<常山县生态环境分区管控动态更新方案>的通知》, 常山县人民政府,常政发〔2024〕24号,2024年7月19日施行。
- (1)《辐射环境保护管理导则 核技术利用建设项目 环境影响评价文件的内容和格式》 (HJ 10.1-2016);
- (2)《电离辐射防护与辐射源安全基本标准》(GB 18871-2002);
- (3)《工业探伤放射防护标准》(GBZ 117-2022);
- (4)《工业X射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)及第1号修改单;
- (5)《职业性外照射个人监测规范》(GBZ 128-2019);
- (6)《环境γ辐射剂量率测量技术规范》(HJ 1157-2021);
- (7)《辐射环境监测技术规范》(HJ 61-2021);
- (8)《电离辐射监测质量保证通用要求》(GB 8999-2021);
- (9)《辐射事故应急监测技术规范》(HJ 1155-2020);
- (10)《危险废物贮存污染控制标准》(GB 18597-2023);
- (11)《危险废物识别标志设置技术规范》(HJ 1276-2022);
- (12)《承压设备无损检测第1部分:通用要求》(NB/T 47013.1-2015)。
- (1) 环评委托书:
- (2) NCRP REPORT No.151;
- (3) 公司提供的其他与工程建设有关的技术资料:
- (4)《辐射防护导论》,方杰主编。

其他

技

术

标

准

15

表 7 保护目标与评价标准

7.1 评价范围

根据《辐射环境保护管理导则 核技术利用建设项目 环境影响评价文件的内容和格式》(HJ 10.1-2016)的规定: "放射源和射线装置应用项目的评价范围,通常取装置所在场所实体屏蔽物边界外 50m 的范围(无实体边界项目视具体情况而定,应不低于 100m 的范围)",结合本项目的辐射污染特点(II 类射线装置),本项目评价范围为探伤室实体屏蔽外 50m 的区域。

7.2 保护目标

本项目环境保护目标为评价范围 50m 内从事设备操作的辐射工作人员及公众成员,具体见表 7-1。

环境保 护目标	所在位置	人员规模	方位	与探伤室边界最 近距离(m)	剂量约束值		
辐射工	暗室、评片室	2.1	东侧	紧邻	✓ F C/-		
作人员	操作室	2 人		2	≤5mSv/a		
	喷砂区	约 10 人次/d	大 加i	7			
	厂内道路	约 50 人次/d	东侧	35	≤0.25mSv/a		
	机加工区	约 10 人次/d	南侧	紧邻			
	配电房	约 2 人次/d		20			
ΛΛ	厂内道路	约 50 人次/d		40			
公众 成员	过道	约 20 人次/d	=== / □ul	紧邻			
	物料堆放区	约 5 人次/d	西侧	10			
	过道	约 20 人次/d		紧邻			
	打磨房	约 2 人次/d	- 	5			
	厂内道路	约 50 人次/d	北侧	15			
	厂内宿舍	约 50 人次/d		35			
注:探伤室正上方为不上人平台,正下方为土层,无地下室。							

表 7-1 本项目辐射工作场所主要环境保护目标一览表

7.3 评价标准

7.3.1《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)

本标准适用于实践和干预中人员所受电离辐射照射的防护和实践中源的安全。

- (1) 防护与安全的最优化
- 4.3.3.1 对于来自一项实践中的任一特定源的照射,应使防护与安全最优化,使得在考虑 了经济和社会因素之后,个人受照剂量的大小、受照射的人数以及受照射的可能性均保持在

可合理达到的尽量低水平;这种最优化应以该源所致个人剂量和潜在照射危险分别低于剂量约束的潜在照射危险约束为前提条件(治疗性医疗照射除外)。

(2)辐射工作场所的分区

6.4.1 控制区

6.4.1.1 注册者和许可证持有者应把需要和可能需要专门防护手段或安全措施的区域定 为控制区,以便控制正常工作条件下的正常照射或防止污染扩散,并预防潜在照射或限制潜 在照射的范围。

6.4.2 监督区

- 6.4.2.1 注册者和许可证持有者应将下述区域定为监督区:这种区域未被定为控制区,在 其中通常不需要专门的防护手段或安全措施,但需要经常对职业照射条件进行监督和评价。
 - (3) 剂量限值

B1.1 职业照射

- B1.1.1.1 应对任何工作人员的职业照射水平进行控制, 使之不超过下述限值:
- a) 由审管部门决定的连续 5 年的年平均有效剂量 (但不可作任何追溯性平均), 20mSv;

B1.2 公众照射

实践使公众中有关关键人群组的成员所受到的平均剂量估计值不应超过下述限值:

- a) 年有效剂量, 1mSv;
- (4) 剂量约束值

根据《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)中 11.4.3.2 条款:"剂量约束值通常应在公众照射剂量限值 10%~30%(即 0.1mSv/a~0.3mSv/a)的范围之内",遵循辐射防护最优化的原则,结合项目实际情况,本次评价取职业照射剂量限值的 25%、公众照射剂量限值的 25%分别作为本项目剂量约束值管理目标,具体见表 7-2。

表7-2 剂量约束值

适用范围	剂量约束值
职业人员	5.0mSv/a
公众人员	0.25mSv/a

7.3.2《工业探伤放射防护标准》(GBZ 117-2022)

本标准规定了 X 射线和 γ 射线探伤的放射防护要求。本标准适用于使用 600kV 及以下的 X 射线探伤机和 γ 射线探伤机进行的探伤工作(包括固定式探伤和移动式探伤),工业 CT

探伤和非探伤目的同辐射源范围的无损检测参考使用。本标准不适用于加速器和中子探伤机 进行的工业探伤工作。

- 6.1 探伤室放射防护要求
- 6.1.1 探伤室的设置应充分注意周围的辐射安全,操作室应避开有用线束照射的方向并应与探伤室分开。探伤室的屏蔽墙厚度应充分考虑源项大小、直射、散射、屏蔽物材料和结构等各种因素。无迷路探伤室门的防护性能应不小于同侧墙的防护性能。X射线探伤室的屏蔽计算方法参见GBZ/T250。
 - 6.1.2 应对探伤工作场所实行分区管理,分区管理应符合 GB 18871 的要求。
 - 6.1.3 探伤室墙体和门的辐射屏蔽应同时满足:
- a)关注点的周围剂量当量参考控制水平,对放射工作场所,其值应不大于 100μSv/周,对公众场所,其值应不大于 5μSv/周;
 - b)屏蔽体外 30cm 处周围剂量当量率参考控制水平应不大于 2.5uSv/h。
 - 6.1.4 探伤室顶的辐射屏蔽应满足:
- a)探伤室上方已建、拟建建筑物或探伤室旁邻近建筑物在自辐射源点到探伤室顶内表面 边缘所张立体角区域内时,探伤室顶的辐射屏蔽要求同 6.1.3;
- b)对没有人员到达的探伤室顶,探伤室顶外表面 30cm 处的周围剂量当量率参考控制水平通常可取 100μSv/h。
- 6.1.5 探伤室应设置门-机联锁装置,应在门(包括人员进出门和探伤工件进出门)关闭后才能进行探伤作业。门-机联锁装置的设置应方便探伤室内部的人员在紧急情况下离开探伤室。在探伤过程中,防护门被意外打开时,应能立刻停止出束或回源。探伤室内有多台探伤装置时,每台装置均应与防护门联锁。
- 6.1.6 探伤室门口和内部应同时设有显示"预备"和"照射"状态的指示灯和声音提示装置,并与探伤机联锁。"预备"信号应持续足够长的时间,以确保探伤室内人员安全离开。"预备"信号和"照射"信号应有明显的区别,并且应与该工作场所内使用的其他报警信号有明显区别。在醒目的位置处应有对"照射"和"预备"信号意义的说明。
- 6.1.7 探伤室内和探伤室出入口应安装监视装置,在控制室的操作台应有专用的监视器,可监视探伤室内人员的活动和探伤设备的运行情况。
 - 6.1.8 探伤室防护门上应有符合 GB 18871 要求的电离辐射警告标志和中文警示说明。
 - 6.1.9 探伤室内应安装紧急停机按钮或拉绳,确保出现紧急事故时,能立即停止照射。

按钮或拉绳的安装,应使人员处在探伤室内任何位置时都不需要穿过主射线束就能够使用。按钮或拉绳应带有标签,标明使用方法。

- 6.1.10 探伤室应设置机械通风装置,排风管道外口避免朝向人员活动密集区。每小时有效通风换气次数应不小干 3 次。
 - 6.1.11 探伤室应配置固定式场所辐射探测报警装置。

7.3.3 《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)

本标准适用于 500kV 以下工业 X 射线探伤装置的探伤室。

- 3.2 需要屏蔽的辐射
- 3.2.1 相应有用线束的整个墙面均考虑有用线束屏蔽,不需考虑进入有用线束区的散射辐射。
 - 3.2.2 散射辐射考虑以 0°入射探伤工件的 90°散射辐射。
- 3.2.3 当可能存在泄漏辐射和散射辐射的复合作用时,通常分别估算泄漏辐射和各项散射辐射,当它们的屏蔽厚度相差一个什值层厚度(TVL)或更大时,采用其中较厚的屏蔽,当相差不足一个 TVL 时,则在较厚的屏蔽上增加一个半值层厚度(HVL)。
 - 3.3 其他要求
- 3.3.1 探伤室一般应设有人员门和单独的工件门。对于探伤可人工搬运的小型工件探伤室。可以仅设人员门。探伤室人员门宜采用迷路的形式。
 - 3.3.2 探伤装置的控制室应置于探伤室外,控制室和人员门应避开有用线束照射的方向。
 - 3.3.3 屏蔽设计中,应考虑缝隙、管孔和薄弱环节的屏蔽。
- 3.3.4 当探伤室使用多台 X 射线探伤装置时,按最高管电压与相应该管电压下的常用最大管电流设计屏蔽。
 - 3.3.5 应考虑探伤室结构、建筑费用及所占空间,常用的材料为混凝土、铅和钢板等。

7.3.4《危险废物贮存污染控制标准》(GB 18597-2023)

本标准规定了危险废物贮存污染控制的总体要求、贮存设施选址和污染控制要求、容器和包装物污染控制要求、贮存过程污染控制要求,以及污染物排放、环境监测、环境应急、实施与监督等环境管理要求。

6.1.1 贮存设施应根据危险废物的形态、物理化学性质、包装形式和污染物迁移途径, 采取必要的防风、防晒、防雨、防漏、防渗、防腐以及其他环境污染防治措施,不应露天堆 放危险废物。

- 6.1.2 贮存设施应根据危险废物的类别、数量、形态、物理化学性质和污染防治等要求设置必要的贮存分区,避免不相容的危险废物接触、混合。
- 6.1.3 贮存设施或贮存分区内地面、墙面裙脚、堵截泄漏的围堰、接触危险废物的隔板 和墙体等应采用坚固的材料建造,表面无裂缝。
- 6.1.4 贮存设施地面与裙脚应采取表面防渗措施;表面防渗材料应与所接触的物料或污染物相容,可采用抗渗混凝土、高密度聚乙烯膜、钠基膨润土防水毯或其他防渗性能等效的材料。贮存的危险废物直接接触地面的,还应进行基础防渗,防渗层为至少 1m 厚黏土层(渗透系数不大于 10⁻⁷cm/s),或至少 2mm 厚高密度聚乙烯膜等人工防渗材料(渗透系数不大于 10⁻¹⁰cm/s),或其他防渗性能等效的材料。
- 6.1.5 同一贮存设施宜采用相同的防渗、防腐工艺(包括防渗、防腐结构或材料),防渗、防腐材料应覆盖所有可能与废物及其渗滤液、渗漏液等接触的构筑物表面;采用不同防渗、防腐工艺应分别建设贮存分区。
 - 6.1.6 贮存设施应采取技术和管理措施防止无关人员进入。

7.3.5 本项目管理目标

综合考虑《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)、《工业探伤放射防护标准》(GBZ 117-2022)、《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)及第 1 号修改单等评价标准,确定本项目的管理目标如下:

1、周围剂量当量率

根据《工业探伤放射防护标准》(GBZ117-2022)第 6.1.3 条款要求,本项目探伤室的四侧墙体外 30cm 处和防护门外 30cm 处周围剂量当量率参考控制水平不大于 2.5µSv/h。本项目探伤室所属的 6#厂房部分为单层结构,探伤室顶棚为人员不可到达区域,且有用线束张角范围内无建筑物,根据《工业探伤放射防护标准》(GBZ 117-2022)第 6.1.4 条款要求,探伤室顶棚外表面 30cm 处的周围剂量当量率参考控制水平取 100µSv/h。

2、个人剂量约束值

根据《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)条款 4.3.2.1 与 11.4.3.2 的要求,本项目个人年有效剂量控制水平如下:

- A. 职业人员年有效剂量<5mSv/a;
- B. 公众成员年有效剂量≤0.25mSv/a。
- 3、通风要求

根据《工业探伤放射防护标准》(GBZ 117-2022)第 6.1.10 条款的要求,探伤室应设置机械
通风装置,排风管道外口避免朝向人员活动密集区。每小时有效通风换气次数应不小于3次。

表 8 环境质量和辐射现状

8.1 项目地理位置和场所位置

8.1.1 项目地理位置

浙江先导精密机械有限公司拟在浙江省衢州市常山县金川街道龙江路 5 号 6#车间内新建一间探伤室。公司所在厂区东侧为浙江常山德迅达电子科技有限公司;南侧隔龙江路为浙江凯迈生物科技有限公司;西侧隔柚都南路为浙江先导热电科技股份有限公司和浙江富乐德石英科技有限公司;北侧隔龙翔路为常山华凯木业有限公司。

8.1.2 项目场所位置

本项目拟建探伤室位于 6#车间内,6#车间为单层结构,下方为土层,无地下室。探伤室 东侧紧邻评片室,2m~50m 范围内为操作室、评片室、暗室、喷砂区和厂内道路; 南侧紧邻机 加工区,20m~50m 范围内为配电房和厂内道路; 西侧紧邻过道,10m~50m 范围内为物料堆放 区; 北侧紧邻过道,5m~50m 范围内为打磨房、厂内道路和厂内宿舍。

8.2 辐射环境质量现状评价

8.2.1监测目的

通过现场监测的方式掌握项目区域环境质量和辐射水平现状,为分析及预测本项目运行时对职业人员、公众成员及周围环境的影响提供基础数据。

8.2.2环境现状评价对象

本项目探伤室拟建地址及周边环境。

8.2.3监测因子

根据项目污染因子特征,环境监测因子为γ辐射空气吸收剂量率。

8.2.4监测点位

根据《环境γ辐射剂量率测量技术规范》(HJ 1157-2021)等要求,结合现场条件,对本项目各辐射工作场所及周围环境进行监测布点。本项目共布设 12 个监测点位,布点情况见附图 7, 监测报告及监测资质见附件 6。

8.2.5 监测方案

- (1) 监测单位: 浙江亿达检测技术有限公司(资质证书编号: 211112051235);
- (2) 监测时间: 2025年04月23日;
- (3) 监测方式: 现场检测;

- (4) 监测依据:《环境γ辐射剂量率测量技术规范》(HJ 1157-2021)等;
- (5) 监测频次:即时测量,每个监测点在仪器读数稳定后以10秒间隔读取10个数;
- (6) 监测工况:辐射环境本底;
- (7) 天气环境条件: 天气: 晴; 室内温度: 20℃; 室外温度: 20℃; 相对湿度: 52%;
- (8) 监测仪器: 该仪器在检定有效期内,相关设备参数见表 8-1。

表 8-1 监测仪器设备参数

仪器名称	X、γ辐射周围剂量当量率仪
仪器型号	6150 AD 6/H (内置探头: 6150 AD-b/H 外置探头: 6150 AD 6/H)
仪器编号	167510+165455
生产厂家	Automess
量程	内置探头: 0.05μSv/h~99.99μSv/h 外置探头: 0.01μSv/h~10mSv/h
能量范围	内置探头: 20keV-7MeV 外置探头: 60keV-1.3MeV
检定证书编号	2024H21-20-5106288001
检定有效期	2025年2月28日~2026年2月27日
检定单位	上海市计量测试技术研究院华东国家计量测试中心
校准因子 C _f	1.06
探测限	10nSv/h

8.2.6质量保证措施

- (1) 合理布设监测点位,保证各点位布设的科学性和可比性,同时满足标准要求。
- (2) 监测方法采用国家有关部门颁布的标准, 检测人员经考核并持合格证书上岗。
- (3) 监测仪器每年定期经计量部门检定,检定合格后方可使用。
- (4) 每次测量前、后均检查仪器的工作状态是否正常。
- (5) 由专业人员按操作规程操作仪器,并做好记录。
- (6) 监测报告严格实行三级审核制度,经过校核、审核,最后由技术负责人审定。

8.2.7监测结果及评价

监测结果见表8-2。

表8-2 本项目拟建场所及周围环境辐射本底监测结果

公 与护卫	± />-↓#->-	γ辐射空气吸收	位置		
位点编号	点位描述	平均值	标准差	[22.]	
1#	本项目探伤室拟建区域	111	3	室内	
2#	本项目评片室拟建区域	89	3	室内	
3#	本项目操作室拟建区域	97	2	室内	
4#	本项目暗室拟建区域	106	2	室内	
5#	喷砂区	80	2	室内	
6#	厂内道路	96	1	室外	
7#	机加工区	107	1	室内	
8#	配电房	140	2	室内	
9#	物料堆放区	112	2	室内	
10#	过道	97	2	室内	
11#	打磨房	88	3	室内	
12#	厂内宿舍	121	2	室内	

注: 1、根据《环境 γ 辐射剂量率测量技术规范》(HJ 1157-2021)中第 5.4 条款,本次测量时,测量时仪器探头垂直向下,距地面的参考高度为 lm,仪器读数稳定后,以 10s 为间隔读取 10 个数据;

由表8-2可知:本项目拟建探伤工作场所及周围环境室内γ辐射空气吸收剂量率范围为80nGy/h~140nGy/h,室外γ辐射空气吸收剂量率为96nGy/h。由《浙江环境天然贯穿辐射水平调查研究》可知,金华市(1986年之前衢州属于金华地区)室内的γ辐射空气吸收剂量率在62~467nGy/h之间,金华市室外道路上γ辐射空气吸收剂量率在59~150nGy/h之间。因此,本项目拟建场所及周围环境的γ辐射空气吸收剂量率处于当地一般本底水平,未见异常。

^{2、}根据《环境 γ 辐射剂量率测量技术规范》(HJ 1157-2021)中第 5.5 条款,本次检测设备测量读数的空气比释动能和周围剂量当量的换算系数参照 JJG393,使用 137 Cs 作为检定/校准参考辐射源时,换算系数取 1.20Sv/Gy;

³、 γ 辐射空气吸收剂量率均已扣除测点处宇宙射线响应值 25.5nGy/h,本样品中建筑物对宇宙射线的屏蔽修正因子,6# 点位取 1; 12#点位取 0.8; 其余点位取 0.9。

表 9 项目工程分析与源项

9.1 施工期工程分析

本项目固定式探伤施工期主要为探伤室、暗室和评片室等辅助用房建筑施工及设备安装调试。建设施工时主要污染因子为施工扬尘、施工废水、施工人员生活污水、施工噪声、建筑垃圾及生活垃圾。设备安装调试阶段会产生 X 射线、臭氧和氮氧化物及包装废弃物。本项目施工作业范围有限,施工期较短,对周围环境产生的影响是短暂的,随着施工期结束,环境影响也随之停止。具体工艺流程及产污环节见图 9-1。

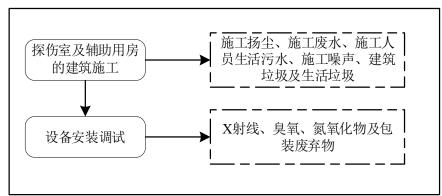


图 9-1 本项目施工期工艺流程及产污环节示意图

9.2 工艺设备和工艺分析

9.2.1 设备组成及工作方式

本项目 X 射线探伤机主要由 X 射线管头组装体、控制器、连接电缆及附件组成,具有体积小、重量轻、携带方便、自动化程度高等特点。为延长 X 射线探伤机使用寿命,探伤机按工作时间和休息时间以 1:1 方式工作和休息,确保 X 射线管充分冷却,防止过热。

典型 X 射线探伤机外观情况见图 9-2。

图 9-2 典型 X 射线探伤机外观图

9.2.2 工作原理

X 射线探伤机是利用 X 射线对物件进行透射拍片的检测装置。通过 X 射线管产生的 X 射线 对受检工件焊缝处所贴的 X 线感光片进行照射,当射线在穿过裂缝时其衰减明显减少,胶片接受的辐射增大,在显影后的胶片上产生一个较黑的图像显示裂缝所在的位置,X 射线探伤机就据此实现探伤目的。

X 射线探伤机主要由 X 射线管和高压电源组成。X 射线管由阴极和阳极组成。阴极通常是装在聚焦杯中的钨灯丝,阳极靶则根据应用的需要,由不同的材料制成各种形状,一般用高原子序数的难融金属(如钨、铂、金、钽等)制成。当灯丝通电加热时,电子就"蒸发"出来,而聚焦杯使这些电子聚集成束,直接向嵌在金属阳极中的靶体射击。高电压加在 X 射线管的两极之间,使电子在射到靶体之前被加速达到很高的速度。这些高速电子到达靶面为靶所突然阻挡从而产生 X 射线。

典型的 X 射线管结构见图 9-3。

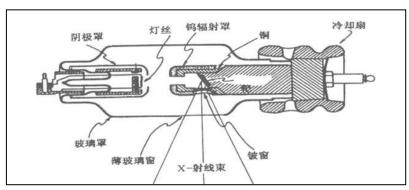


图 9-3 典型 X 射线管示意图

9.2.3 工艺流程及产污环节

当需要对被检工件进行固定式探伤操作前,探伤操作人员必须关闭探伤室防护门,打开探伤室内固定式场所辐射探测报警装置,随身携带好个人剂量计和个人剂量报警仪。辐射工作人员将所需要进行 X 射线探伤的工件放置于气动滑轨上送入探伤室内,选择适当位置,在工件待检部位布设 X 射线胶片并加以编号,检查无误,工作人员撤离探伤室,并将工件门关闭,然后根据探伤工件材质厚度、待检部位、检查性质等因素调节相应管电压、管电流和曝光时间等,检查无误即进行曝光。当达到预定的照射时间后,关闭电源。待全部曝光摄片完成后,工作人员进入探伤室,打开工件门将探伤工件送出探伤室外,从探伤工件上取下已经曝光的 X 片,待暗室冲洗处理后给予评片,完成一次探伤。胶片成像探伤工艺流程及产污环节见图 9-4。

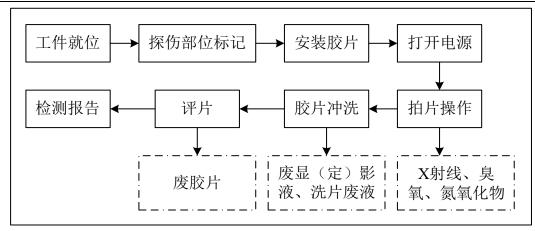


图 9-4 X 射线固定式探伤工艺流程产污环节示意图

9.2.4 暗室洗片流程及产污环节

探伤检测后将照射过的暗袋放至暗室,在无可见光只有暗室红灯的情况下拆开暗袋,取出 胶片放入洗片架,从取出胶片直至定影操作结束,以下所有操作过程均必须在暗室内进行,采 用手动洗片的方式。

- ①显影:将带胶片的洗片夹依次放入显影槽内,视放置位置,保证胶片之间的间隔至少12mm,不要多放,正常显影在 20℃时 5~8min。显影过程中最好是 1min 内将胶片作为水平和垂直方向搅动数秒钟。
- ②停影:在显影结束后,将洗片夹从显影槽内取出,放入流动清水中去除胶片上附着的残留显影液,停影时间控制在 0.5~1min。
- ③定影:将停显后的胶片立即放入定影槽内,注意胶片之间不得互相接触,以免出现叠影。为保证均匀而快速的定影,胶片在刚浸入定影液时以及最初的1min,均应做上下方向的搅动约10min,然后让其在定影中浸渍到定影结束。定影时间至少为底片通透时间的两倍。但对于刚配置不久的定影液,定影时间不得超过15min。
- ④冲洗:定影完成后,将洗片夹从定影槽中取出,放置在流动水中冲洗 20~30min,去除胶片上附着的残留定影液。
- ⑤干燥:冲洗完成后,将胶片从洗片夹中取出,通过悬挂或其他方式将胶片在环境温度的 静止空气或循环空气下进行干燥。
- ⑥显影液或定影液经过一定数量的胶片处理后,其洗片性能将下降,此时应配置新液替换旧液,废液采用专用防渗容器收集后转移到危废暂存间暂存。

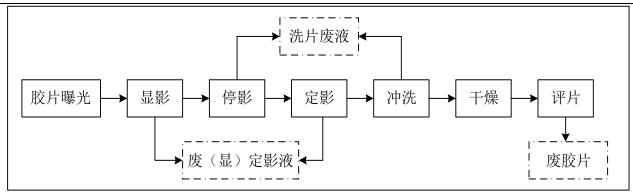


图 9-5 暗室洗片工艺流程及产污环节示意图

9.2.5 运行工况和人员配置计划

本项目探伤工件为公司自生产的精密部件产品,材质为钢时,最大尺寸为 1500mm(长)×1500mm(宽)×1500mm(高)×40mm(厚度),材质为铝时,最大尺寸为 1500mm(长)×1500mm(宽)×1500mm(高)×80mm(厚度)。项目拟配 2 名辐射工作人员,于操作室处轮流负责探伤装置操作,日工作 8 小时(昼间一班制),每年工作 250 天(50 周,每周工作 5 天)。本项目为抽检,单个工件检测曝光时间约为 10min,周曝光时间为 20h,年出束时间为 1000h;年拍片量约为 6000 张。

9.3 污染源项描述

(1) X射线

由 X 射线探伤机的工作原理可知, X 射线随探伤装置的开、关而产生和消失。本项目 X 射线探伤机只有在开机并处于出束状态(曝光状态)时, 才会发出 X 射线, 对周围环境产生辐射影响。因此, 在开机曝光期间, X 射线是本项目的主要污染因子。

辐射场所中的 X 射线主要包括有用线束、泄漏辐射和散射辐射,本项目 X 射线探伤机辐射源强详情见下表。

	次了一个次自然比重 5 为 为								
	编	设备名				有用线束/散射辐射的 X	距靶点 1m 处的泄		
	细号	以 金 石 称	设备型号	最大管电压	最大管电流	射线距靶点 1m 输出量 ^①	漏辐射剂量率 ^②		
	5	17/1				$mGy \cdot m^2 / (mA \cdot min)$	$(\mu Sv/h)$		
	1	X射线	RIX-250MC-2	250kV	3mA				
	1	探伤机	KIX-250WIC-2	230K V	JIIIA	16.5	5×10 ³		
	2	X射线	XXGH-2505z	250kV	5mA	10.3	3^10°		
	2	探伤机	AAGH-23032	230K V	JIIIA				
г									

表 9-1 本项目拟配置 X 射线探伤机辐射源强一览表

注:①根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)附录 B 中表 B.1,有用线束屏蔽估算时根据透射曲线的过滤条件选取相对应的输出量;在未获得厂家给出的输出量,散射辐射屏蔽估算选取表中各千伏(kV)下输出量的较大值保守估计。本项目 X 射线探伤机最大管电压均为 250kV,则滤过条件为 0.5m 铜时 X 射线距辐射源点 1m 处输出量为 16.5mGy· m^2 /(mA·min)。

②根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)表 1,管电压>200kV 时,距靶点 1m 处的泄漏辐射剂量率为 $5 \times 10^3 \mu Sv/h$ 。

(2) 臭氧和氮氧化物

X射线机工作时产生射线,会造成探伤室内空气电离产生少量的臭氧和氮氧化物,对周围环境空气会产生影响。本项目探伤室顶棚设有1个排风口,通风量为500m³/h,探伤室的净体积为49m³,每小时有效通风换气次数大于3次,且排风口排出气体通过管道送至厂房顶部排出,可满足《工业探伤放射防护标准》(GBZ 117-2022)第6.1.10条款"探伤室应设置机械通风装置,排风管道外口避免朝向人员活动密集区,每小时有效通风换气次数应不小于3次"的要求。

(3) 废显(定)影液、废胶片和洗片废液

本项目探伤装置进行洗片与评片过程中产生的废显(定)影液、废胶片与洗片废液属于《国家危险废物名录(2025年版)》中感光材料废物,危废代码为 HW16:900-019-16,并无放射性。

本项目探伤年拍片量为 6000 张,按洗 1000 张片用 20L 显(定)影液,经估算项目工作过程中每年产生的废显(定)影液约 120L,密度保守按照 1g/cm³,折算重量为 120kg。废片率按3%计算,则每年产生废胶片约 180 张,单张胶片平均重量约 10g,折算重量为 1800g。该部分危险废物定期委托有资质的单位处理。

根据《承压设备无损检测第1部分:通用要求》(NB/T 47013.1-2015)中第7.3.3条款要求,无损检测记录的保存期应符合相关法规标准的要求,且不得少于7年。7年后若用户需要,可将原始检测数据转交用户保管。经与建设单位核实,存档满7年后的胶片均作为危废交有资质单位处理处置。基于本项目运行后的第8年开始,同一年既有探伤洗片产生的废胶片,又有存档期满后产生的废胶片,本次评价保守考虑来核算废胶片年产生量,即180(单年废胶片量)+5820(第8年作为危废的废胶片量)=6000张,单张胶片平均重量约10g,折算重量为60kg。

本项目暗室洗片过程中会产生少量的洗片废液。参考同类企业的实际产污经验值,按洗 1000 张片产生 50L 洗片废液,则本项目洗片废液年产生量约 300kg。该部分废水含较高浓度的 AgBr、显(定)影剂及强氧化物,需做危险废物处理,定期委托有资质的单位处理处置。

根据《建设项目危险废物环境影响评价指南》(原环境保护部公告 2017 年第 43 号)要求,本次评价明确危险废物的名称、数量、类别、形态、危险特性和污染防治措施等内容,具体见表 9-2。

				表 9-2	本项目危	. 险废物基	基本情况汇	总表			
序号	危废 名称	危废 类别	危废代码	年产生量	产生工 序及装 置	形态	主要成分	有害 成分	产废 周期	危险 特性	污染防 治措施
1	废显 (定) 影液			120kg	洗片	液态	卤化银、 硫代硫 酸钠、对 苯二酚 等	卤化银、 硫代硫 酸钠、对 苯二酚 等	固定式 探伤		收集暂 存于危
2	废胶片	HW16	900-0 19-16	60kg	评片	固态	废胶片	废胶片	固定式 探伤、 存档期 满	Т	废暂存 间, 定 期委托 有资质
3	洗片废液			300kg	洗片	液态	AgBr、 显(定) 影剂及 强氧化 物	AgBr、显 (定)影 剂及强 氧化物	固定式 探伤		単位处置

表 10 辐射安全与防护

10.1 项目安全设施

10.1.1布局及合理性分析

本项目辐射工作场所位于厂区 6#车间内,由探伤室、操作室、评片室和暗室等组成,各功能设施完善。本项目工件门位于探伤室的北侧(电动开启),便于工件进出,人员进出门位于探伤室东侧(电动开启),操作室位于探伤室东侧,本项目探伤室设置有迷道,操作室的位置避免了有用线束的直接照射。本项目探伤工件的最大尺寸为 1500mm(长)×1500mm(宽)×1500mm(高),探伤室内尺寸为 3600mm(长)×3600mm(宽)×3750mm(高),工件门门洞尺寸为 2000mm(宽)×2500mm(高),探伤工件在探伤室外由气动滑轨送入探伤室内,再由探伤室内行吊选择适当位置放置,探伤室内行吊高度为 3000mm。工件可方便出入探伤室且满足工件门关闭时最大工件的探伤需求,尺寸满足探伤工件进出探伤室的要求。本项目产生的危险废物依托主体工程危废暂存间进行暂存,危废暂存间位于厂区内北部。本项目辐射工作人员由人员进出门进出探伤室,工件摆放完成后立即离开探伤室,不做过多停留。

综上所述,本项目探伤工作场所的功能设计较为完善,可以满足固定式的基本配置需求。 探伤室设计可满足探伤工件进出探伤室并于探伤室内进行探伤检测的要求,操作室与探伤室分 开,且操作室所在东侧墙壁已设置有迷道。因此,本项目探伤室的设计满足《工业探伤放射防 护标准》(GBZ 117-2022)第 6.1.1 条款要求,合理可行。

10.1.2分区原则及两区规划

按照《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)的要求,辐射工作场所可分为控制区、监督区,其划分原则如下:控制区是指需要和可能需要专门防护手段或安全措施的区域;监督区是指通常不需要专门的防护手段或安全措施,但需要经常对职业照射条件进行监督和评价的区域。

根据控制区、监督区的划分原则,结合《工业探伤放射防护标准》(GBZ 117-2022)的相关规定,本项目对探伤工作场所实行分区管理,将探伤室内部区域划为控制区,在探伤室工件门显著位置设置电离辐射警告标志和中文警示说明;将探伤室四侧墙体外1m处、控制室、暗室和评片室划分为监督区,对该区不采取专门防护手段安全措施,但要定期检测其辐射剂量率,在正常工作过程中,监督区内不得有无关人员滞留。辐射工作场所分区管理示意图见附图10。

10.1.3辐射工作场所屏蔽防护设计

根据建设单位提供的设计资料,本项目探伤室的屏蔽防护设计方案见表 10-1。

表 10-1 探伤室屏蔽情况一览表

		₹10-1 外以至所版情况 % ₹					
项目		屏蔽防护设计方案					
探伤	外尺寸	体积为 95m³,尺寸为 5480mm(外长)×4320mm(外宽)×4000mm(外高)					
室	内尺寸	体积为 49m³,尺寸为 3600mm(内长)×3600mm(内宽)×3750mm(内高)					
3	东墙	15mm 铅板					
Ī	南墙	15mm 铅板					
Ī	西墙	15mm 铅板					
4	比 墙	15mm 铅板					
1	页棚	15mm 铅板					
地坪		下方为土层,无地下室,不做特殊防护					
į	*道	探伤室东侧设有"L"型迷道,宽度为 800mm,内墙外墙均为 15mm 铅板					
工件门 (设于北墙)		电动平移门,门洞的尺寸为 2000mm(宽)×2500mm(高);门体的尺寸为 2300mm(宽)×2800mm(高),上下左右和中缝搭接宽度分别为 150mm、150mm、150mm、150mm、门体结构为 15mm 铅					
人员进出门 (设于东墙)		电动平移门,门洞的尺寸为 900mm(宽)×2200mm(高);门体的尺寸为 1200mm (宽)×2500mm(高),上下左右和中缝搭接宽度分别为 150mm、150mm、150mm、 150mm、门体结构为 15mm 铅					
电	.缆孔	设于东墙,穿越形式: U型,出线口直径为80mm					
通	风口	设于顶棚,共1个排风口,装有排风扇,风量: 500m³/h,排风口直径为350mm, 出口处设15mm铅防护罩,穿越形式:L型					
注: 铅的	内密度不小于	11.3g/cm ³ 。					

本探伤室四侧墙体和顶棚的厚度为 360mm, 其中有 15mm 为铅板, 其余部分为工字钢及装饰面。经表 11 理论计算, 本项目 RIX-250MC-2 型 X 射线探伤机和 XXGH-2505z 型 X 射线探伤机单独在最大工况正常运行时, 各关注点辐射剂量率均不大于 2.5μSv/h, 满足《工业探伤放射防护标准》(GBZ 117-2022)中"屏蔽体外 30cm 处周围剂量当量率参考控制水平应不大于 2.5μSv/h"和"探伤室顶棚外表面 30cm 处周围剂量当量率参考控制水平应不大于 100μSv/h"的要求。因此,本项目探伤室屏蔽设计方案合理可行。

10.1.4 辐射安全和防护及环保措施

1、探伤装置固有安全属性

(1) X 射线探伤机在额定工作条件下,距 X 射线管焦点 100cm 管头组处的漏射线所致周围剂量当量率应符合《工业探伤放射防护标装体准》(GBZ117-2022) 5.1.1 款表 1 的要求,在文件中应有这些 X 射线指标的说明。其他放射防护性能应符合 GB/T 26837 的要求。

(2)操作室控制台:设置有高压接通时的外部报警或指示装置;设置紧急停机开关;X 射线发生器控制面板设置在操作室,与探伤室分开设置,以便尽可能降低操作人员的受照剂量; 操作室设有工作状态指示灯。

2、探伤室辐射安全防护措施

根据《工业探伤放射防护标准》(GBZ117-2022)以及辐射管理的相关制度,本项目探伤室投入使用前,拟具备以下辐射安全和防护措施:

- (1) 本项目探伤室按 GB18871 的管理要求进行两区划分与两区管理。
- (2) 探伤室的北侧设置工件门、东侧设置有人员进出门。工件门和人员进出门均安装门机联锁装置,所有探伤机均与防护门联锁,且只有在防护门关闭后, X 射线装置才能进行探伤作业。防护门打开时立即停止 X 射线照射,关上门不能自动开始 X 射线照射。门-机联锁装置的设置方便探伤室内部的人员在紧急情况下离开探伤室。
- (3) 探伤室工件门、人员进出门以及探伤室内部均拟设有显示"预备"和"照射"状态的指示灯,并与探伤机联锁。"预备"信号应持续足够长的时间,以确保探伤室内人员安全离开。"预备"信号和"照射"信号应有明显的区别,并且应与该工作场所内使用的其他报警信号有明显区别,醒目处拟设对"照射"和"预备"信号意义的说明。
- (4)探伤室内东北墙角、西南墙角、工件门外、人员进出门外拟设置有视频监控系统,显示屏设置在操作室。在操作室设专用的监视器,可监视探伤室内人员的活动和探伤设备的运行情况。
- (5) 探伤室工件门和人员进出门上均拟设置有符合 GB18871 要求的电离辐射警告标志和中文警示说明。
- (6)探伤室拟设置紧急停机按钮(探伤室内东侧、西侧、西侧、北侧及操作室各设1个),确保出现紧急事故时,能立即停止照射。按钮安装,应使人员处在探伤室内任何位置时都不需要穿过主射线束就能够使用。按钮拟设置标签,标明使用方法。
- (7) 探伤室内拟设有固定式场所辐射探测报警装置,剂量率显示在控制室,可实时监控 探伤室内剂量率水平。
- (8) 探伤室内通风口设于顶棚,且排风口排出气体通过管道送至厂房顶部排出,已避开人员集中区,穿越形式为 L 型。风机设计风量: 500m³/h,排风口直径 300mm。探伤室的有效通风换气次数均大于 3 次/h。

本项目辐射安全和防护设施布置方案见附图 11。

3、建设单位新增管理措施

- (1)建设单位拟建立放射防护管理组织,明确放射防护管理人员及其职责,建立和实施 放射防护管理制度和措施,并将辐射工作制度张贴在工作现场。
 - (2) 建设单位拟建立探伤装置使用台账。
 - (3) 门机联锁装置和紧急按钮定期维护,并纳入管理制度。

4、固定探伤操作的放射防护要求

- (1)设备正常运行时,工作人员不需要进入探伤室。工作人员进入探伤室时,须佩戴个人剂量计、携带个人剂量报警仪和便携式 X-γ剂量率仪。当剂量率达到设定的报警阈值报警时,探伤工作人员应立即退出探伤室,同时防止其他人进入探伤室,并立即向辐射防护负责人报告。
- (2)固定式探伤工作人员应定期测量正常运行过程中探伤室外周围区域的剂量率水平,包括操作者工作位置和周围毗邻区域人员居留处。测量结果超标或异常应终止探伤工作并向辐射防护负责人报告。
- (3) 交接班或当班使用便携式 $X-\gamma$ 剂量率仪前,应检查是否能正常工作。如发现便携式 $X-\gamma$ 剂量率仪不能正常工作,则不应开始探伤工作。
 - (4) 探伤工作人员应正确使用辐射防护装置,把潜在的辐射降到最低。
- (5) 在每一次照射前,操作人员都应检查探伤室防护门-机联锁装置、照射信号指示灯等防护安全措施是否正常;确认探伤室内部没有人员驻留并关闭工件门。只有在工件门关闭、所有防护与安全装置系统都启动并正常运行的情况下,才能开始探伤工作。

5、探伤装置的检查和维护

- (1) 建设单位的日检,每次工作开始前应进行检查的项目包括:
- ①设备外观是否完好;
- ②电缆是否有断裂、扭曲以及破损:
- ③安全联锁是否正常工作;
- ④报警设备和警示灯是否正常运行;
- ⑤螺栓等连接件是否连接良好;
- ⑥机房内安装的固定辐射检测仪是否正常。
- (2)设备维护
- ①建设单位应对设备维护负责,每年至少维护一次;
- ②设备维护应由受过专业培训的工作人员或设备制造商进行。设备维护包括设备的彻底检

查和所有零部件的详细检测;

- ③当设备有故障或损坏,需更换零部件时,应保证所更换的零部件为合格产品;
- ④应做好设备维护记录。

6、危险废物环境管理措施

本项目探伤作业产生的所有胶片均在暗室和评片室进行洗片和评片,产生的危险废物贮存于厂内北侧的危废暂存间。根据《危险废物贮存污染控制标准》(GB 18597-2023)与《危险废物转移管理办法》等规定,为降低危险废物对环境的影响程度,建设单位针对危险废物的贮存、转移和处置等环节拟采取如下环境管理措施:

(1) 危废的贮存

本项目拟利用位于厂区北侧的主体工程危废暂存间,建筑面积约 189m²,一次性最大贮存能力约为 150t。根据已批复的主体工程环境影响登记表,龙江路 5 号厂区的危险废物年产生量约为 621t,该部分危废的处理周期为 1 个月,因此该危废暂存间的最大暂存量约为 52t,则该危废暂存间剩余容量为 98t,本项目废显(定)影液、废胶片与洗片废液的年产生总量为 0.48t,计划的贮存期限一般不超过一年。因此,该危废暂存间可以满足本项目危废贮存的空间要求。该场所的装修已满足"防风、防晒、防雨、防漏、防渗、防腐"的要求,地面硬化已做防渗处理,设置危废标识,设置专用防渗容器、防渗托盘,其建设已满足《危险废物贮存污染控制标准》(GB 18597-2023)、《危险废物识别标志设置技术规范》(HJ 1276-2022)的相关要求。为保证危废的安全管理,本项目投入运行时,主体工程的危废暂存间必须处于正常使用状态,建设单位应做好二者运行时间的衔接性。

根据《建设项目危险废物环境影响评价指南》要求,本次评价明确危险废物贮存场所(设施)的名称、位置、占地面积、贮存方式、贮存容积、贮存周期等内容,具体见表 10-2。

贮存场 所名称	危险废物 名称	危险废 物类别	危险废物 代码	产生量 (kg/a)	位置	占地 面积	贮存 方式	贮存 能力	贮存 周期
加石物	度显(定)	初矢加	7人4号	(Kg/a)		四亿	专用防	月ヒノノ	归剂
各	影液			120			专用的 渗容器		一年
危险废 物暂存 间	废胶片	HW16	900-019-16	60	厂区北侧	约 189m ²	袋装 堆放	约 150t	一年
	洗片废液			300			专用防 渗容器		一年

表 10-2 本项目危险废物贮存场所基本情况表

危废暂存间的日常管理要求: ①专人管理, 其他人员未经允许不得入内。②危险废物贮存 前应做好统一包装, 防止渗漏, 同时配备计量称重设备进行称重, 危废包装容器应粘贴符合规 定的标签,注明危险废物名称、来源、数量、主要成分和性质。③危险废物必须分类分区贮存,不同类危险废物间应有明显间隔,严禁不相容、具有反应性的危险废物混合贮存。④建立危险废物管理台账,管理人员应作好危险废物情况的记录,记录上须注明危险废物的名称、来源、数量、特性和包装容器的类别、入库日期、废物出库日期及接收单位名称。危险废物的记录和货单在危险废物回取后应继续保留三年。

(2) 危废的转移

本项目危废委托有资质的单位定期到公司收集并运输转移,危废转移过程中严格执行转移 联单管理制度,危险废物电子转移联单数据应当在信息系统中至少保存十年。

(3) 危废的委托处置

建设单位拟与有资质单位签订危废处置合同,对本项目产生的危废进行处置。

7、辐射监测仪器

本项目辐射监测仪器配置计划见表 10-3。

序号	名称	数量
1	个人剂量计	2 枚
2	个人剂量报警仪	1台
3	便携式 X-γ 剂量率仪	1台
4	固定式场所辐射探测报警装置	1台

表 10-3 本项目辐射监测仪器配置计划

用于 X 射线探伤装置放射防护检测的仪器,应按规定进行定期检定/校准,取得相应证书。使用前,应对辐射检测仪器进行检查,包括是否有物理损坏、调零、电池、仪器对射线的响应等。

8、探伤设施的退役

- 1、本项目射线装置后期如报废,公司应按照《浙江省辐射环境管理办法(2021年修正)》 第十八条要求,对射线装置内的高压射线管进行拆解,并报颁发辐射安全许可证的生态环境部 门核销。
 - 2、X 射线发生器应处置至无法使用,或经监管机构批准后,转移给其他已获许可机构。
 - 3、清除所有电离辐射警告标志和安全告知。

10.2 三废的治理

(1) 臭氧和氮氧化物

本项目 X 射线作业状态时,会使空气电离产生微量的臭氧和氮氧化物。本项目 X 射线固

定探伤作业开展时,探伤室内拟设有机械通风系统,该部分废气通过排风管道排至探伤室外,
对环境影响较小。
(2) 废显(定) 影液、废胶片及洗片废液
本项目探伤洗片和评片过程中会产生一定量的废显(定)影液、废胶片及洗片废液,属于
危险废物。本次评价要求将其集中收集后存放在危废暂存间,并由专人保管,委托有资质的单
位处理处置,建立相关危废台账。

表 11 环境影响分析

11.1 建设阶段对环境的影响

11.1.1 土建施工阶段

本项目施工期涉及探伤室和暗室、评片室等辅助用房的施工建设,工程量较小,施工期较短,施工期对环境的影响,本次评价仅作简要分析:

(1) 扬尘

在整个施工期,扬尘来自于材料运输、基础建设等施工活动,由于扬尘源多且分散,属无组织排放。受施工方式、设备、气候等因素制约,产生的随机性和波动性大。因此,建设单位应加强施工场地管理,施工采取湿法作业,以降低建筑扬尘对周围环境的影响,现场堆积建筑垃圾应采取一定的遮盖措施,避免风力扬尘。土建工程结束后扬尘影响即可恢复。

(2) 噪声

施工机械在运行中会产生噪声,拟采用低噪声设备,避免夜间施工等措施以降低噪声影响,对周围环境影响较小。

(3)废水

施工期产生的废水主要为施工人员的生活污水,生活污水产量较小,经建设单位化粪池预处理后纳入市政污水管网,对周围环境影响较小。

(4) 固体废物

整个施工过程中产生少量以建筑垃圾为主的固体废物及施工人员生活垃圾,建筑垃圾于指定位置堆放后按规定处置,生活垃圾统一收集后委托环卫部门及时清运处理。

11.1.2 设备安装调试阶段

本项目 X 射线探伤机安装调试阶段对于环境主要影响为 X 射线、臭氧和氮氧化物以及包装材料等固废。调试由设备厂商负责,调试前建设单位需建立完整的安全管理制度。本项目探伤设备的安装与调试均由专业人员在探伤室内进行,经过墙体的屏蔽与距离衰减后,设备产生的辐射对环境的影响是可接受的。设备安装完成后,建设单位需及时回收包装材料及其他固体废物进行处置,不得随意丢弃。

11.2 运行阶段辐射环境影响分析

为分析预测本项目探伤室投入运行后所引起的辐射环境影响,本项目选用《工业 X 射线探伤辐射屏蔽规范》(GBZ/T 250-2014)及第 1 号修改清单中计算方法进行理论计算,采用理论计算

的方法来预测本项目辐射工作场所运行过程中对周围环境的辐射影响。本项目探伤室内配备 2 台 X 射线探伤机,但不存在同时使用的情况,故本次环评仅预测分析在只开一台探伤机的情况下对 周围环境的影响。由于探伤室正下方为土层,无地下室,不作特殊防护,辐射环境影响分析不考 虑朝向地坪线束。

本项目 RIX-250MC-2 型 X 射线探伤机为定向机,最大管电压为 250kV,最大工作管电流为 3mA,有用线束仅朝向北侧照射。本项目 XXGH-2505z 型 X 射线探伤机为水平周向机,最大管电压为 250kV,最大工作管电流为 5mA,有用线束朝向东侧、南侧、西侧、北侧照射。本项目两台探伤机开展探伤工作时靶点作业范围相同,辐射屏蔽计算时按照最不利情况考虑,即全部时间为 XXGH-2505z 型 X 射线探伤机开机的情况。

根据 GBZ/T 250-2014 第 3.2.1 条款"相应有用线束的整个墙面均考虑有用线束屏蔽,不需考虑进入有用线束区的散射辐射"。因此,XXGH-2505z 型 X 射线探伤机开机时,东侧、南侧、西侧、北侧工件门和人员进出门考虑有用线束,人员进出门还需考虑迷道散射,顶棚按泄漏辐射与散射辐射考虑。

本项目 X 射线探伤机有用线束照射方向不朝向顶棚照射,且顶棚屏蔽防护采用 15mm 铅, 具备有效的屏蔽能力。因此,本报告不考虑天空反散射影响。

11.2.1 关注点的选取

根据本项目工程特征及探伤室周围环境状况,选择剂量关注点为探伤室四侧墙体外、顶棚外、工件门外和人员进出门外 30cm 处。关注点的分布情况见图 11-1 和图 11-2,剂量关注点情况列于表 11-1。

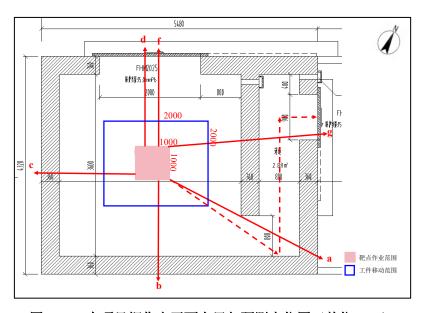


图 11-1 本项目探伤室平面布局与预测点位图(单位:mm)

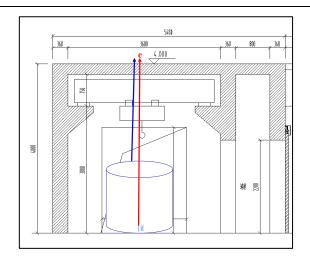


图 11-2 本项目探伤室剖面布局与预测点位图(单位:mm)

	•					
关注	 点位描述	源点与关注点距离	散射体至关注点距	XXGH-2505z 开机需屏蔽		
点位	思型抽处	R (m)	离 Rs(m)	的辐射源		
a	东侧防护墙外 30cm 处	3.6	/	有用线束		
b	南侧防护墙外 30cm 处	1.9	/	有用线束		
c	西侧防护墙外 30cm 处	1.9	/	有用线束		
d	北侧防护墙外 30cm 处	1.9	/	有用线束		
e	顶棚外 30cm 处	4.1	2.8	泄漏辐射、散射辐射		
f	工件门外 30cm 处	1.9	/	有用线束		
g	人员进出门外 30cm 处	3.2	/	有用线束、迷道散射		

表 11-1 探伤室各关注点位分布情况表

11.2.2 场所辐射水平预测

(1) 有用线束计算公式

根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T250-2014),在给定屏蔽物质厚度 X时,屏蔽体外关注点的有用线束辐射剂量率 \dot{H} (μ Sv/h)按式(11-1)计算,然后由附录 B.1 的曲线查出相应的屏蔽物质厚度:

$$\dot{H} = \frac{I \cdot H_0 \cdot B}{R^2} \dots (\vec{r} \vec{l}, 11 - 1)$$

式中: I——X 射线探伤装置在最高管电压下的常用最大管电流,本项目取值 5mA;

 H_0 ——距辐射源点(靶点)1m 处输出量, $\mu Sv \cdot m^2 / (mA \cdot h)$;根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)附录 B 中表 B.1,本项目 X 射线探伤机最大管电压均为 250kV,则滤过条件为 0.5mm 铜时 X 射线距辐射源点 1m 处输出量为 $16.5mGy \cdot m^2 / (mA \cdot min)$,即 $9.9 \times 10^5 \mu Sv \cdot m^2 / (mA \cdot h)$;

B——屏蔽透射因子;根据GBZ/T 250-2014附录B图B.2曲线向外推,250kV射线穿过15mm铅

时的透射因子取 4.0×10^{-7} : 250kV射线穿过30mm铅时的透射因子取 4.5×10^{-11} :

R——距辐射源点(靶点)至关注点的距离,单位为米(m),取值见表 11-1。

(2) 泄漏辐射计算公式

根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T250-2014),在给定屏蔽物质厚度 X 时,屏蔽体外关注点的泄漏辐射剂量率 \dot{H} ($\mu Sv/h$)按式(11-2)计算:

式中: B——屏蔽透射因子,根据 GBZ/T 250-2014 附录 B 表 B.2, 250kV 时 X 射线在铅中的 什值层 TVL 为 2.9mm,根据公式 $B=10^{-X/TVL}$ 计算,其中 X 为屏蔽层厚度,mm; 250kV 时,射线 15mm 铅时的透射因子取 6.7×10^{-6} ;

R——距辐射源点(靶点)至关注点的距离,单位为米(m),取值见表 11-1;

 \dot{H}_L ——距靶点1m处X射线管组装体的泄漏辐射剂量率,单位为微希每小时(μ Sv/h),根据《工业X射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)第4.2.2条款表1,本项目装置在额定工作条件下,距靶点1m处的泄漏辐射剂量率为 $5.0 \times 10^3 \mu$ Sv/h。

(3) 散射辐射计算公式

根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T250-2014),在给定屏蔽物质厚度 X 时,屏蔽体外关注点的散射辐射剂量率 \dot{H} ($\mu Sv/h$)按式(11-3)计算。

式中: I——X 射线探伤装置在最高管电压下常用最大管电流, mA, 本项目取值 5mA;

 H_0 — 距辐射源点(靶点)1m 处输出量, $\mu Sv^{\bullet}m^2/(mA^{\bullet}h)$;根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)附录 B 中表 B.1,本项目 X 射线探伤机最大管电压均为 250kV,则滤过条件为 0.5mm 铜时 X 射线距辐射源点 1m 处输出量为 $16.5mGy\cdot m^2/(mA\cdot min)$,即 $9.9\times 10^5\mu Sv^{\bullet}m^2/(mA^{\bullet}h)$;

B——屏蔽透射因子,根据公式 $B = 10^{-X/TVL}$ 计算,其中 X 为屏蔽层厚度,mm;查询 GBZ/T 250-2014 表 2,当 X 射线能量为 250kV 时,对应的 90°散射辐射最高能量为 200kV,根据 GBZ/T 250-2014 附录 B 表 B.2,200kV 时,铅的什值层 TVL 为 1.4mm,射线在 15mm 铅中的透射因子为 1.9×10^{-11} ;

F— R_0 处的辐射野面积,单位为平方米 (m^2);

α——散射因子,入射辐射被单位面积 (1m²) 散射体散射在距其 1m 处的散射辐射剂量率与

该面积上的入射辐射剂量率的比。与散射物质有关,在未获得相应物质的 α 值时,以水的 α 值保守估计,见附录 B 表 B.3:

 R_0 ——辐射源点(靶点)至探伤工件的距离,单位为米(m);

 $\frac{R_0^2}{F \cdot \alpha}$ 一根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T250-2014)B.4.2,当 X 射线探伤装置圆锥束中心轴和圆锥边界的夹角为 20°时,其值为: 60(150kV)和 50(200~400kV)。本项目保守取值 50:

 R_S ——散射体至关注点的距离,单位为米 (m)。

(4) 迷道散射计算公式

根据《辐射防护导论》(方杰主编),迷道口处的反散射水平可以按式(11-4)计算

$$\dot{H}_{L,\hbar} = \eta_{\gamma S} \cdot \frac{F_{j0} \cdot \alpha_{\gamma 1} \cdot \alpha_{\gamma 2} \cdot \alpha_1 \cdot \alpha_2}{r_1^2 \cdot r_{R1}^2 \cdot r_{R2}^2} \dots (\vec{x} \cdot 11 - 4)$$

式中:

 $\dot{H}_{L,\hbar}$ ——参考点相应的剂量当量率, $\mu Sv \cdot h^{-1}$;

 $\eta_{\gamma s}$ ——辐射减弱的透射比,根据公式 $\eta_{\gamma s}$ = $10^{-\chi TVL}$ 计算,其中 X 为屏蔽层铅厚度(mm),本项目为15mm 铅;

 F_{j0} ——辐射源处辐射水平, μ Sv·m²/h;根据公式 F_{j0} =I· δ_{α} 计算;其中 I 为电子束流强,mA; δ_{α} 为距辐射源点(靶点)1m 处输出量,Gy·m²/(mA·min);根据 GBZ/T 250-2014附录 B 表 B.1 可知,250kV 时,滤过条件为0.5mm 铜时 X 射线距辐射源点1m 处输出量为16.5mGy·m²/(mA·min),即9.9×10 $^{5}\mu$ Sv·m²/(mA·h),则 F_{i0} 取值为5.0×10 $^{6}\mu$ Sv·m²/h。

 α_{γ} ——反射物的反射系数,根据光子散射后的能量 E 和散射角 θ ,对照《辐射防护导论》图 6.4取值。

a——射线束在反射物上的投照面积, m^2 ;根据a=散射宽度×迷道高度计算,散射宽度按迷道宽度为0.8m,迷道高度为3.7m,则 $a_1=a_2=2.9$ m 2 。

 r_l ——辐射源同反射点之间的距离,m,本项目取值为 r_l =2.3m。

 r_R ——反射点到参考点的距离,m。 r_{R1} =2.7m, r_{R2} =0.7m。

光子散射后的能量 E 按式(11-5)计算

式中:

 E_0 一入射光子能量,MeV。

 θ ——散射角,。。

第一次反射的入射光子能量取 0.25MeV 时,散射角 θ 取 30°,则 $\alpha_{\gamma 1}$ 为 0.022;第二次反射的入射光子能量根据式(11-5)计算得 0.23MeV,散射角 θ 取 30°,则 $\alpha_{\gamma 2}$ 为 0.023;第三次反射的入射光子能量根据式(11-5)计算得 0.21MeV。根据 GBZ/T 250-2014 附录 B 表 B.2,由内插法可知 210kVX 射线在铅中的什值层 TVL 为 1.7mm。则 $\eta_{\gamma S}$ 为 1.5×10-9。

(5) 预测结果

根据公式(11-1)~(11-3),代入相关参数,本项目 XXGH-2505z 型 X 射线探伤机开机运行时探伤室周围环境辐射水平预测结果见表 11-2~表 11-6。

表 11-2 有用线束辐射剂量率预测结果

	1				I	
关注点位	屏蔽材料 X	I (mA)	$\begin{array}{c} H_0 \ (\mu Sv \bullet m^2 / \\ (mA \bullet h)) \end{array}$	В	R (m)	Η̈́ (μSv/h)
a (东侧)	15mm 铅板				3.4	1.7E-01
b (南侧)		5	9.9E+05	4.0E-07	1.9	5.5E-01
c (西侧)					1.9	5.5E-01
d (北侧)					1.9	5.5E-01
f (工件门)					1.9	5.5E-01
g (人员进出门)	30mm 铅板			4.5E-11	3.2	2.2E-05

表 11-3 泄漏辐射剂量率预测结果

关注点位	屏蔽材料 X	В	H_L ($\mu Sv/h$)	R (m)	Η̈́ (μSv/h)
e (顶棚)	15mm 铅板	6.7E-06	5.0E+03	4.1	2.0E-03

表 11-4 散射辐射剂量率预测结果

		• •	10		•		
关注点位	屏蔽材 料 X	В	I (mA)	$H_0 (\mu Sv \cdot m^2 / (mA \cdot h))$	$\frac{{R_0}^2}{F \cdot \alpha}$	Rs (m)	Η̈́ (μSv/h)
e(顶棚)	15mm 铅	1.9E-11	5	9.9E+05	50	2.8	2.4E-07

表 11-5 迷道散射剂量率预测结果

关注点位	屏蔽材料 X	$\eta_{\gamma S}$	r1	rR1	rR2	F_{j0}	Η̈́ (μSv/h)
a (东侧)	15mm 铅	1.50.00	2.2	2.7	0.7	5 OF LOC	2.05.06
g (人员进出门)	13IIIM 指	1.5E-09	2.3	2.7	0.7	5.0E+06	2.0E-06

表 11-6 各关注点位辐射剂量率预测结果汇总

 关注点位	有用线束	泄漏辐射	散射辐射	迷道辐射	总剂量率	GBZ117-2022 标准限值	是否
大任思位	$(\mu Sv/h)$	(μSv/h)	达标				

a (3	京侧)	1.7E-01	/	/	/	1.7E-01	2.5	达标
b (有侧)	5.5E-01	/	/	/	5.5E-01	2.5	达标
c ([哲侧)	5.5E-01	/	/	/	5.5E-01	2.5	达标
d (=	上侧)	5.5E-01	/	/	/	5.5E-01	2.5	达标
e (]	页棚)	/	2.0E-03	2.4E-07	/	2.0E-03	100	达标
f (Д	件门)	5.5E-01	/	/	/	5.5E-01	2.5	达标
g(人员	进出门)	2.2E-05	/	/	2.0E-06	2.4E-05	2.5	达标

因此,本项目 XXGH-2505z 型 X 射线探伤机在最大工况正常运行时,各关注点辐射剂量率均不大于 $2.5\mu Sv/h$,满足《工业探伤放射防护标准》(GBZ 117-2022)中 "屏蔽体外 30cm 处周围剂量当量率参考控制水平应不大于 $2.5\mu Sv/h$ "和 "探伤室顶棚外表面 30cm 处周围剂量当量率参考控制水平应不大于 $100\mu Sv/h$ "的要求。

11.2.3 局部贯穿分析

(1) 电缆孔处辐射防护分析

本项目电缆口设置于东墙,穿越形式为U型,出口处设15mm铅防护罩,出线口直径为80mm。根据《辐射防护导论》(方杰主编)P189页的实例证明,本项目所有射线均需经过三次以上散射才能经各类管道散射至探伤室墙外,经过管道的多重反射、吸收和削减后辐射能量急剧下降,射线通过管道外漏可忽略不计。因此,本项目电缆管道的布置方式不会破坏墙体的屏蔽效果,能够满足辐射防护要求。

(2) 通风口处辐射防护分析

本项目通风孔设于顶棚,共 1 个排风口,装有排风扇,风量: 500m³/h,排风口直径 350mm,出口处设 15mm 铅防护罩,穿越形式为 L 型。通风口处铅防护罩防护效果与铅房顶棚相当,故通风孔处也能够满足《工业探伤放射防护标准》(GBZ 117-2022)中"屏蔽体外 30cm 处周围剂量当量率参考控制水平应不大于 2.5μSv/h"的要求。

11.2.4 人员受照剂量估算

1、计算公式

参考《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)第 3.1.1 条款中的公式(1),人员受照剂量计算公式如下:

$$E = \dot{H} \cdot t \cdot U \cdot T \cdot 10^{-3} \cdot \dots \cdot \dots \cdot (11 - 6)$$

式中:

E——年有效剂量,mSv/a;

 \dot{H} ——关注点处周围剂量当量率, μ Sv/h;

T——居留因子;

U——使用因子,本项目取 1;

t——受照时间,h/a。

本项目的居留因子选取根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)表 A.1,具体数值见下表 11-7:

表 11-7 不同场所的居留因子

场所	居留因子(T)	示例
全居留	1	操作室、暗室、办公室、邻近建筑物中的驻留区
部分居留	1/2~1/5	走廊、休息室、杂物间
偶然居留	1/8~1/40	厕所、楼梯、人行道

2、估算结果

由于射线装置产生的剂量率与距离平方成反比关系,同方向人员受照剂量仅需考虑与源点距离最近且居留因子最大的保护目标。本项目人员受照剂量估算时,按照最不利情况进行取值,即开机时间全为 XXGH-2505z 型 X 射线探伤机时的人员受照剂量。利用上述的相关数据,本项目相关人员的预期年剂量水平的计算见表 11-8。

表 11-8 人员受照剂量计算参数及计算结果一览表

	人员属性	居留因子	源点 与 注点 距 (m)	源点 与护标 家(m)	保护目标 处辐射剂 量率取值 (μSv/h)	周受照时 间(h/周)	周受照总剂 量(μSv/周)	年受照 时间 (h/a)	年受照总剂 量(mSv/a)
职	暗室、评片室	1	3.1	3.1	1.7E-01	20	3.4E+00	1000	1.7E-01
业	操作室	1	3.1	4.8	7.1E-02	20	1.4E+00	1000	7.1E-02
	喷砂区	1	3.1	9.8	1.7E-02	20	3.4E-01	1000	1.7E-02
	厂内道路	1/8	3.1	37.8	1.1E-03	20	2.8E-03	1000	1.4E-04
	机加工区	1	1.9	11.6	1.5E-02	20	3.0E-01	1000	1.5E-02
	配电房	1/8	1.9	21.6	4.3E-03	20	4.3E-02	1000	2.2E-03
公	厂内道路	1/8	1.9	41.6	1.1E-03	20	2.8E-03	1000	1.4E-04
公众	过道	1/8	1.9	1.9	5.5E-01	20	1.4E+00	1000	6.9E-02
<i>></i>	物料堆放区	1/2	1.9	11.6	1.5E-02	20	1.5E-01	1000	7.5E-03
	过道	1/8	1.9	1.9	5.5E-01	20	1.4E+00	1000	6.9E-02
	打磨房	1	1.9	6.6	4.6E-02	20	9.2E-01	1000	4.6E-02
	厂内道路	1/8	1.9	16.6	7.2E-03	20	1.8E-02	1000	9.0E-04
	厂内宿舍	1	1.9	36.6	1.5E-03	20	3.0E-02	1000	1.5E-03

根据表 11-11 计算可知,本项目 X 射线探伤机运行后所致辐射工作人员最大受照周有效剂量为 $3.4\mu Sv$,年有效剂量为 $1.7\times 10^{-1} mSv$; 所致公众最大受照周有效剂量为 $1.4\mu Sv$,年有效剂量为 $6.9\times 10^{-2} mSv$ 。因此,辐射工作人员和公众年有效剂量满足本项目的剂量约束值要求(职业人员<

5mSv/a; 公众成员≤0.25mSv/a), 也满足《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)中规定的剂量限值要求(职业人员≤20mSv/a; 公众成员≤1.0mSv/a); 周有效剂量满足《工业探伤放射防护标准》(GBZ 117-2022)"对放射工作场所,其值应不大于 100μSv/周,对公众场所,其值应不大于 5μSv/周"的要求。

11.2.5"三废"环境影响分析

(1) 臭氧和氮氧化物

本项目探伤过程中产生的臭氧和氮氧化物,产生量小且顶棚设有机械通风装置将其排至探伤室外环境。探伤室的有效通风换气次数均大于 3 次/h,排风口排出气体通过管道送至厂房顶部排出,已避开人员集中区,满足《工业探伤放射防护标准》(GBZ117-2022)第 6.1.10 条款 "探伤室应设置机械通风装置,排风管道外口避免朝向人员活动密集区。每小时有效通风换气次数应不小于 3 次"的要求。

(2) 固废

本项目探伤过程中产生的废显(定)影液、洗片废液及废胶片属于危险废物,企业拟定期委 托有资质单位处置。

11.3 探伤室屏蔽防护能力分析

根据《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)、《工业探伤放射防护标准》(GBZ 117-2022)的规定,结合建设单位探伤室屏蔽防护相关数据及上述辐射环境影响预测分析结果,对该建设单位使用的探伤室的辐射屏蔽能力符合性进行如下分析:

- (1)设计中,该探伤室的设置已充分考虑周围的放射安全,且探伤室与操作室分开;结合理论计算结果可知:探伤室四屏蔽体和顶棚的防护性能,均能满足辐射防护;
- (2) 由辐射环境影响预测分析可知,辐射工作人员和公众成员所受有效剂量能符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002) 中关于"剂量限值"的要求;
- (3) 本项目在探伤过程中产生的 X 射线,使空气电离产生一定量的臭氧和氮氧化物,探伤室内的机械排风系统将臭氧和氮氧化物排至室外,不会对工作人员和公众成员产生影响。

因此,本项目探伤室屏蔽能力能达到 RIX-250MC-2 型 X 射线探伤机和 XXGH-2505z 型 X 射线探伤机最大功率工作时的辐射防护要求。

11.4 事故影响分析

11.4.1 事故风险分析

建设单位使用的射线装置属Ⅱ类射线装置,可能的事故工况主要有以下几种情况:

- (1)检测过程中,门-机联锁装置、紧急停机按钮等失效使工作人员和公众误闯或误留,引 发辐射事故。
 - (2) 操作人员违规操作,造成周围人员的不必要照射,引发辐射事故。

11.4.2 事故防范措施

- (1)从事X射线探伤的辐射工作人员必须经过有关部门的专业培训,具备上岗资格证,业务熟练;严格遵守射线装置的使用管理规定和操作规程,禁止违章操作、野蛮作业;作好X射线探伤的日常维护保养,定期检查,保证设备始终处于完好状态。操作过程中,设备发生任何故障都要立即停机,及时通知有关人员进行维修,并做好故障记录,不允许设备带故障运行。
- (2) 定期检查维护,确保门机联锁装置、紧急停机按钮、电离辐射警告标志、工作状态指示灯等安全措施正常运转,保持完好;定期对射线装置进行检修维护,定期对周围辐射水平进行检测,发现异常,及时切断电源,请厂家对设备进行维护维修。
- (3)射线装置在调试和使用时,应当具有防止误操作、防止工作人员和公众受到意外照射的安全措施,调试和维修工作由厂家专业人员承担。

发生辐射事故时,事故单位应当立即切断电源、保护现场,并立即启动本单位的辐射事故应急方案,采取必要的防范措施,并在 2 小时内填报《辐射事故初始报告表》。对于发生的误照射事故,应首先向当地生态环境部门报告,造成或可能造成超剂量照射的,还应当同时向当地卫生行政部门报告。对于射线装置被盗事故,还应向公安部门报告。

表 12 辐射安全管理

12.1 辐射安全与环境保护管理机构的设置

12.1.1 机构设置

根据《放射性同位素与射线装置安全许可管理办法》的相关规定,使用II类射线装置的工作单位,应当设有专门的辐射安全与环境保护管理机构,或者至少有1名具有本科以上学历的技术人员专职负责辐射安全与环境保护管理工作,并以文件形式明确管理人员职责。从事辐射工作的人员必须通过辐射安全和防护专业知识及相关法律法规的培训和考核。

本项目为建设单位首次开展核技术利用建设项目,目前处于筹建阶段。建设单位承诺尽快成立辐射安全与环境保护管理机构,全面负责单位的辐射安全与环境保护管理工作,并配备相应的成员,确定管理机构领导、成员及辐射防护管理专(兼)职人员,做到分工清晰、职责明确,并在日后运行过程中,根据人事变动情况及时调整机构组成。

12.1.2 辐射人员管理

(1) 个人剂量检测

建设单位拟为新增辐射工作人员进行个人剂量检测。个人剂量计检测周期一般为一个月,最长不超过3个月,并建立个人剂量档案,加强档案管理,个人剂量档案应终生保存。

(2) 辐射工作人员培训

根据生态环境部《关于做好 2020 年核技术利用辐射安全与防护培训和考核工作有关事项的通知》(环办辐射函〔2019〕853 号〕和《关于核技术利用辐射安全与防护培训和考核有关事项的公告》(2019 年,第 57 号)精神,所有辐射工作人员必须通过生态环境部举办的辐射安全和防护专业知识培训及相关法律法规的培训和考核,尤其是新进的、转岗的人员,必须到生态环境部培训平台(http:/fushe.mee.gov.cn)自主培训并参加考核取得成绩单,经考核合格后方可上岗,并按时接受再培训。

根据《核技术利用辐射安全考核专业分类参考目录(2021年版)》,本项目操作人员辐射安全考核专业类别为 X 射线探伤。建设单位拟新增 2 名辐射工作人员,由公司现有员工参加生态环境部组织的辐射安全与防护平台自主学习,考核合格后上岗,并按时每五年重新进行考核。

(3) 辐射工作人员职业健康体检

新增辐射工作人员上岗前,应当进行上岗前的职业健康检查,符合辐射工作人员健康标准的,方可参加相应的辐射工作。上岗后辐射工作人员应定期进行在岗期间职业健康检查,两次

检查的时间间隔不超过2年,必要时可增加临时性检查。辐射工作人员脱离放射工作岗位时,放射工作单位应当对其进行离岗前的职业健康检查,并建立个人健康档案。

建设单位拟组织 2 名新增辐射工作人员到有资质的医院进行上岗前体检,建立个人健康档案,并长期保存,并每 2 年进行在岗期间体检,离岗前进行离岗体检。

12.1.3 辐射安全和防护状况年度评估报告

建设单位核技术利用项目正式开展后,应对开展的核技术利用项目辐射安全和防护状况进行年度评估,并于每年 1 月 31 日前向发证机关提交上一年度的辐射安全和防护状况年度评估报告。辐射安全与防护状况年度评估报告应包括辐射安全和防护设施的运行与维护情况;辐射安全和防护制度及措施的制定与落实情况;辐射工作人员变动及接受辐射安全和防护知识教育培训情况;射线装置台账;场所辐射环境监测和个人剂量监测情况及监测数据;辐射事故及应急响应情况;存在的安全隐患及其整改情况;其他有关法律、法规规定的落实情况等内容。

12.2 辐射安全管理规章制度

根据《放射性同位素与射线装置安全许可管理办法》,使用射线装置的单位应有健全的操作规程、岗位职责、辐射防护和安全保卫制度、设备检修维护制度、人员培训计划、监测方案等,有完善的辐射事故应急措施。

根据《放射性同位素与射线装置安全和防护条例》、《放射性同位素与射线装置安全许可管理办法》等法律法规要求,建设单位承诺将制定以下方面的管理制度:

辐射安全和防护保卫制度:根据本项目的具体情况制定辐射防护和安全保卫制度,重点是射线装置的运行和维修时辐射安全管理。

安全操作规程: 针对本项目射线装置制定相应的操作规程,明确辐射工作人员的资质条件要求、设备操作流程及操作过程中应采取的具体防护措施,重点是设备的操作步骤,操作前对辐射安全措施的检查等,确保辐射安全措施的有效性:明确本项目设备主射方向,确保避免产生额外辐射照射。

设备检修维护制度:对可能引起操作失灵的关键零配件及时进行更换。设备检修时禁止开启检测装置,待检修完毕,开启检测装置试探伤,确认检修完成。检修后主要性能未达仪器基本参数时不准重新投入使用。

辐射工作人员岗位职责: 明确管理人员、本项目辐射工作人员的岗位责任,使每一个相关的工作人员明确自己所在岗位具体责任,并层层落实。

射线装置使用登记和台账管理制度:建立设备的档案和台账,使用射线装置时及时进行登

记、检查等,同时加强台账管理。

人员培训计划: 明确培训对象、内容、周期、方式以及考核的办法等内容,并强调对培训档案的管理,做到有据可查。

人员管理制度: 明确辐射工作人员开展辐射工作时均应佩戴个人剂量计,个人剂量计定期送有资质单位进行监测,公司明确个人剂量计的佩戴和监测周期,个人剂量监测结果及时告知辐射工作人员,使其了解其个人剂量情况,以个人剂量检测报告为依据,严格控制职业人员受照剂量,防止个人剂量超标,并做好岗前监测; 明确辐射工作人员进行职业健康体检的周期,公司建立个人累积剂量和职业健康体检档案。

辐射事故应急预案:根据《关于建立放射性同位素与射线装置辐射事故分级处理和报告制度的通知》(环发〔2006〕145号文〕的要求,公司应成立单位负责人为领导的辐射事故应急领导小组。针对可能产生的辐射污染情况制定事故应急制度,该制度要明确事故情况下应采取的防护措施和执行程序,有效控制事故,及时制止事故的恶化,保证及时上报、渠道畅通,并附上各联系部门及联系人的联系方式。同时根据本单位实际情况,每年至少开展一次综合或单项的应急演练,应急演练前编制演习计划,包括演练模拟的事故事件情景;演练参与人员等。

自行检查和年度评估制度: 定期对射线装置的安全装置和防护措施、设施的安全防护效果进行检查,核实各项管理制度的执行情况,对发现的安全隐患,必须立即进行整改,避免事故的发生。根据《放射性同位素与射线装置安全和防护管理办法》中相关要求,使用射线装置的单位,应当对本单位的射线装置的安全和防护状态进行年度评估,并于每年1月31日前向发证机关提交上一年度的评估报告。

辐射安全档案管理制度:公司须建立个人剂量档案,辐射工作人员个人剂量档案内容应当包括个人基本信息、工作岗位、剂量监测结果等材料。辐射工作人员如调离辐射工作岗位,公司应当将个人剂量档案长期保存;新增辐射工作人员应进行岗前、在岗期间和离岗职业健康检查,每两年委托相关资质单位对放射工作人员进行职业健康检查,建立职业健康监护档案且长期保存。公司应在工作场所醒目位置张贴《操作规程》、《辐射安全与防护保卫制度》、《辐射工作人员岗位职责》与《辐射事故应急预案》等制度,并做好使用登记和台账记录工作。在日后的工作实践中,公司应根据核技术利用具体情况以及在工作中遇到的实际问题,并根据《放射性同位素与射线装置安全许可管理办法》的要求及时进行更新、完善,提高制度的可操作性,并严格按照制度进行。

12.3 辐射监测

12.3.1 监测仪器

根据《放射性同位素与射线装置安全许可管理办法》及《工业探伤放射防护标准》(GBZ 117-2022)等要求,使用 II 类射线装置的单位应配备与辐射类型和辐射水平相适应的防护用品和监测仪器。公司拟为辐射工作人员配置 1 台个人剂量报警仪和 2 支个人剂量计,并配备 1 台便携式 X-y 剂量率仪和 1 台固定式场所辐射探测报警装置。

12.3.2 个人剂量监测

辐射工作人员工作时应佩戴个人剂量计和个人剂量报警仪。个人剂量计须定期(一般为一个月,最长不得超过三个月)送检。公司应建立剂量管理限值和剂量评价制度,对受到超剂量限值的应进行评价,跟踪分析高剂量的原因,优化实践行为,并指定专职辐射管理人员负责对个人剂量检测结果(检测报告)统一管理,建立档案,个人剂量档案应当长期保存。

12.3.3 探伤工作场所辐射监测

本项目正式投入使用后,公司须定期(每年1次)委托有资质的单位对探伤室周围环境进行监测,并建立监测档案,监测数据每年年底向当地生态环境部门上报备案。

①年度监测

委托有资质的单位对辐射工作场所的剂量当量率进行监测,监测周期为1次/年;年度监测报告应作为《安全和防护状况年度评估报告》的重要组成内容一并提交给发证机关。

②日常自我监测

定期自行开展辐射监测(也可委托有资质的单位进行自行监测),制定辐射工作场所的定期监测制度,监测数据应存档备案,参考《工业探伤放射防护标准》(GBZ 117-2022)第8.3.4条款,本项目射线装置投入使用后每年至少进行1次常规监测。

③监测内容和要求

- A、监测内容: 周围剂量当量率。
- B、监测布点及数据管理: 监测布点应参考环评提出的监测计划或验收监测布点方案。监测数据应记录完善,并将数据实时汇总,建立好监测数据台账以便核查。

12.3.4 竣工环保验收

建设单位应根据核技术利用项目的开展情况,按照《建设项目竣工环境保护验收暂行办法》(国环规环评〔2017〕4号)和《建设项目竣工环境保护设施验收技术规范 核技术利用》(HJ 1326-2023)的相关要求,对配套建设的环境保护设施进行验收,自行或委托有能力的技术机构编制验收报告,并组织由设计单位、施工单位、环境影响报告表编制机构、验收监测(调查)

报告编制机构等单位代表以及专业技术专家等成立的验收工作组,采取现场检查、资料查阅、召开验收会议等方式开展验收工作。建设项目配套建设的环境保护设施经验收合格后,其主体工程方可投入生产或者使用;未经验收或者验收不合格的,不得投入生产或者使用。除需要取得排污许可证的水和大气污染防治设施外,其他环境保护设施的验收期限一般不超过3个月;需要对该类环境保护设施进行调试或者整改的,验收期限可以适当延期,但最长不超过12个月。验收报告公示期满后5个工作日内,建设单位应当登录全国建设项目竣工环境保护验收信息平台,填报建设项目基本信息、环境保护设施验收情况等相关信息,生态环境主管部门对上述信息予以公开。

场所 名称	监测 内容	监测项目	监测点位	监测依据	监测周期
		年度监测	(1) 探伤室四侧屏蔽体、工		1 次/年
		自主监测	件门、人员进出门及顶棚外		1 次/年
本 項 居 佐 作 所 所	周量量率	验收监测	30cm 处; (2)工件门门缝四周、人员进出门门缝四周、电缆管道、通风口表面 30cm 处; (3)操作室、暗室、评片室及人员常驻留位置。	《辐射环境监测技术规范》(HJ61-2021)及《工业探伤放射防护标准》(GBZ117-2022)	竣工验收
	个人 剂量 检测	个人剂量 当量	所有辐射工作人员	《职业性外照射个人 监 测 规 范 》 (GBZ128-2019)	常规监测周期一般为 1个月,最长不应超过 3个月

表 12-1 监测场所及监测项目建议

12.4 辐射事故应急

公司需建立《辐射事故应急预案》,制定《辐射事故应急预案》后,应制定计划定期组织应急人员进行应急预案的培训和演练。根据《放射性同位素与射线装置安全和防护条例》中第四十一条的规定,结合单位的实际情况和事故工况分析,辐射事故应急预案应当包括下列内容:

- (1) 应急机构和职责分工(具体人员和联系电话)。
- (2) 应急人员的组织、培训以及应急和救助的装备、资金、物资准备。
- (3)辐射事故分级与应急响应措施。
- (4)辐射事故调查、报告和处理程序。

发生辐射事故时,事故单位应当立即启动本单位的辐射事故应急方案,采取必要防范措施,并在 2 小时内填写《辐射事故初始报告表》,向当地生态环境部门和公安部门报告。事故处理完毕后,成立事故调查小组,分析事故原因,总结教训。建设单位必须加强管理,杜绝辐射安全事故的发生。

表 13 结论与建议

13.1 结论

13.1.1 项目工程概况

浙江先导精密机械有限公司拟在浙江省衢州市常山县金川街道龙江路 5 号 6#车间内,新建 1 间探伤室,并配套建设暗室、评片室等辅助用房,拟购 1 台 RIX-250MC-2 型 X 射线定向探 伤机和 1 台 XXGH-2505z 型 X 射线周向探伤机,对公司自生产的精密部件产品进行无损检测。

13.1.2 辐射安全与防护结论

- (1)本项目探伤室已设置迷道,操作室与探伤室分开;探伤室的屏蔽体厚度已充分考虑源项大小、直射、散射、屏蔽物材料和结构等各种因素,其屏蔽防护性能可以满足《工业探伤放射防护标准》(GBZ 117-2022)的相关要求。
- (2) 探伤工作场所实行分区管理,划分监督区与控制区。探伤室工件门和人员进出门均设有门-机联锁装置、显示"预备"和"照射"状态的指示灯、张贴电离辐射警告标志和中文警示说明;探伤室内设置有监视装置、急停按钮、显示"预备"和"照射"状态的指示灯和固定式场所辐射探测报警装置;操作室内设置有急停按钮和监视器。以上措施可满足辐射安全和防护要求。

13.1.3 环境影响分析结论

(1) 主要污染因子

本项目主要污染因子为 X 射线、臭氧、氮氧化物、废胶片、废显(定)影液和洗片废液。

(2) 辐射剂量率影响预测结论

本项目探伤装置在最大工况运行时,各关注点辐射剂量率均不大于 2.5μSv/h,满足《工业探伤放射防护标准》(GBZ 117-2022)中"屏蔽体外 30cm 处周围剂量当量率参考控制水平应不大于 2.5μSv/h"和"探伤室顶棚外表面 30cm 处周围剂量当量率参考控制水平应不大于 100μSv/h"的要求。

(3) 个人剂量影响预测结论

经剂量估算,本项目所致辐射工作人员与公众成员的年有效剂量低于本项目剂量约束值要求 (职业人员≤5.0mSv/a、公众成员≤0.25mSv/a),也满足《电离辐射防护与辐射源安全基本标准》 (GB 18871-2002) 中"剂量限值"要求 (职业人员≤20mSv/a、公众成员≤1.0mSv/a)。

(4)"三废"环境影响分析

本项目运行过程中无放射性废气、放射性废水及放射性固废产生。本项目探伤室内产生的少量臭氧和氮氧化物可通过机械排风装置排出探伤室,臭氧在空气中短时间内会自动分解为氧气,对周围环境空气质量影响较小。探伤过程产生的废胶片、废显(定)影液与洗片废液经收集后定期委托有资质单位进行处理处置。

13.1.4 辐射安全管理结论

- (1)建设单位拟成立辐射安全与环境保护管理机构,负责辐射安全与环境保护管理工作,明确规定成员职责,切实保证各项规章制度的制定与落实。
- (2)本项目辐射工作人员拟参加生态环境部组织的辐射安全与防护培训,考核合格后方 具备上岗条件,并委托有资质单位对本项目辐射工作人员进行个人剂量检测与职业健康体检, 建立个人剂量监测档案和职业健康监护档案。建设单位拟定期请有资质的单位对辐射工作场所 和周围环境的辐射水平进行监测。
- (3)建设单位拟根据《放射性同位素与射线装置安全许可管理办法》的规定,制定相关辐射安全管理规章制度,张贴于探伤工作场所现场处,并认真贯彻实施,以减少和避免发生辐射事故与突发事件。

13.1.5 可行性分析结论

(1) 规划符合性与选址合理性分析结论

本项目位于浙江省衢州市常山县金川街道龙江路 5 号 6#车间内,用地性质为工业用地,符合土地利用规划要求,项目符合《常山县生态环境分区管控动态更新方案》和"三区三线"的要求,不涉及生态保护红线,符合环境质量底线、资源利用上线和生态环境准入清单的要求。同时,本项目探伤室评价范围内无居民和学校等环境敏感点。经辐射环境影响预测,采取一定的辐射防护措施后对周围环境与公众成员的辐射影响是可接受的。因此,本项目的建设符合相关规划要求,且选址合理可行。

(2) 产业政策符合性分析结论

根据国家发展和改革委员会令第 7 号《产业结构调整指导目录(2024 年本)》,本项目 X 射线探伤机的应用不属于其限制类和淘汰类项目,符合国家产业政策的要求。

(3) 实践正当性分析结论

本项目的建设是为了保证公司自生产的精密部件等产品的质量,因此,该项目的实践是必要的。本项目运行过程中,对射线装置的使用将按照国家相关的辐射防护要求采取相应的防护措施,对射线装置的安全管理将建立相应的规章制度。因此,在正确使用和管理射线装置的情

况下,可以将该项目辐射产生的影响降至尽可能小。本项目产生的利益足以弥补其可能引起的辐射危害,该核技术应用实践具有正当性,符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中"实践的正当性"原则。

(4) 环保可行性结论

综上所述,本项目选址合理,符合国家产业政策,符合实践正当性原则,符合"三区三线"相关要求,该项目在落实本报告提出的各项污染防治措施和管理措施后,建设单位将具有与其所从事的辐射活动相适应的技术能力和具备相应的辐射安全防护措施,其运行对周围环境产生的影响能够符合辐射环境保护的要求,从辐射环境保护角度论证,该项目的建设和运行是可行的。

13.2 建议与承诺

13.2.1 建议

- (1)建设单位应加强对探伤室以及探伤工作场所内人员进出的管理,健全辐射安全管理体系,加强辐射安全教育培训,提高辐射工作人员对辐射防护与操作的理解和执行水平,杜绝辐射事故的发生。
- (2)辐射工作人员应规范运行设备并有效使用个人剂量计、个人剂量报警仪等监测用品; 建设单位应定期对探伤设备、防护设施进行检查与维修。
- (3)建设单位应严格执行相关法律法规,落实有关规定,并及时更新完善,提高制度可操作性。

13.2.2 承诺

- (1)建设单位承诺将根据报告表的要求和生态环境主管部门的要求落实相应的污染防治措施和管理要求。
 - (2) 环评报批后,建设单位需及时向有关部门申领《辐射安全许可证》。
- (3)建设项目竣工后,建设单位应当按照《建设项目竣工环境保护验收暂行办法》(国环规环评(2017)4号)、《建设项目竣工环境保护设施验收技术规范 核技术利用》(HJ 1326-2023)的相关要求,组织对配套建设的环境保护设施进行验收,编制验收报告,公开相关信息,接受社会监督,确保建设项目需要配套建设的环境保护设施与主体工程同时投产或者使用,并对验收内容、结论和所公开信息的真实性、准确性和完整性负责,不得在验收过程中弄虚作假。

表 14 审批

下一级生态环境部门预审意见:					
	公章				
经办人 (签字) :	年 月 日				
审批意见:					
	公章				
	ムナ				
经办人(签字):	年 月 日				